forked from JiahuiYu/generative_inpainting
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathguided_batch_test.py
95 lines (80 loc) · 3.12 KB
/
guided_batch_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import time
import os
import argparse
import cv2
import numpy as np
import tensorflow as tf
import neuralgym as ng
from inpaint_model import InpaintCAModel
parser = argparse.ArgumentParser()
parser.add_argument(
'--flist', default='', type=str,
help='The filenames of image to be processed: input, mask, output.')
parser.add_argument(
'--image_height', default=-1, type=int,
help='The height of images should be defined, otherwise batch mode is not'
' supported.')
parser.add_argument(
'--image_width', default=-1, type=int,
help='The width of images should be defined, otherwise batch mode is not'
' supported.')
parser.add_argument(
'--checkpoint_dir', default='', type=str,
help='The directory of tensorflow checkpoint.')
if __name__ == "__main__":
ng.get_gpus(1)
# os.environ['CUDA_VISIBLE_DEVICES'] =''
args = parser.parse_args()
sess_config = tf.ConfigProto()
sess_config.gpu_options.allow_growth = True
sess = tf.Session(config=sess_config)
model = InpaintCAModel()
input_image_ph = tf.placeholder(
tf.float32, shape=(1, args.image_height, args.image_width*3, 3))
output = model.build_server_graph(input_image_ph)
output = (output + 1.) * 127.5
output = tf.reverse(output, [-1])
output = tf.saturate_cast(output, tf.uint8)
vars_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
assign_ops = []
for var in vars_list:
vname = var.name
from_name = vname
var_value = tf.contrib.framework.load_variable(
args.checkpoint_dir, from_name)
assign_ops.append(tf.assign(var, var_value))
sess.run(assign_ops)
print('Model loaded.')
with open(args.flist, 'r') as f:
lines = f.read().splitlines()
t = time.time()
for line in lines:
# for i in range(100):
image, mask, out = line.split()
base = os.path.basename(mask)
guidance = cv2.imread(image[:-4] + '_edge.jpg')
image = cv2.imread(image)
mask = cv2.imread(mask)
image = cv2.resize(image, (args.image_width, args.image_height))
guidance = cv2.resize(guidance, (args.image_width, args.image_height))
mask = cv2.resize(mask, (args.image_width, args.image_height))
# cv2.imwrite(out, image*(1-mask/255.) + mask)
# # continue
# image = np.zeros((128, 256, 3))
# mask = np.zeros((128, 256, 3))
assert image.shape == mask.shape
h, w, _ = image.shape
grid = 4
image = image[:h//grid*grid, :w//grid*grid, :]
mask = mask[:h//grid*grid, :w//grid*grid, :]
guidance = guidance[:h//grid*grid, :w//grid*grid, :]
print('Shape of image: {}'.format(image.shape))
image = np.expand_dims(image, 0)
guidance = np.expand_dims(guidance, 0)
mask = np.expand_dims(mask, 0)
input_image = np.concatenate([image, guidance, mask], axis=2)
# load pretrained model
result = sess.run(output, feed_dict={input_image_ph: input_image})
print('Processed: {}'.format(out))
cv2.imwrite(out, result[0][:, :, ::-1])
print('Time total: {}'.format(time.time() - t))