forked from nickhuangxinyu/QuantResearch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathportfolio_management_one.py
155 lines (138 loc) · 6.04 KB
/
portfolio_management_one.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from cvxopt import matrix, solvers
from datetime import datetime, date
import quandl
assets = ['AAPL', # Apple
'KO', # Coca-Cola
'DIS', # Disney
'XOM', # Exxon Mobil
'JPM', # JPMorgan Chase
'MCD', # McDonald's
'WMT'] # Walmart
# download historical data from quandl
hist_data = {}
for asset in assets:
data = quandl.get('wiki/'+asset, start_date='2015-01-01', end_date='2017-12-31', authtoken='ay68s2CUzKbVuy8GAqxj')
hist_data[asset] = data['Adj. Close']
hist_data = pd.concat(hist_data, axis=1)
# calculate historical log returns
hist_return = np.log(hist_data / hist_data.shift())
hist_return = hist_return.dropna()
# find historical mean, covriance, and correlation
hist_mean = hist_return.mean(axis=0).to_frame()
hist_mean.columns = ['mu']
hist_cov = hist_return.cov()
hist_corr = hist_return.corr()
print(hist_mean.transpose())
print(hist_cov)
print(hist_corr)
# construct random portfolios
n_portfolios = 5000
#set up array to hold results
port_returns = np.zeros(n_portfolios)
port_stdevs = np.zeros(n_portfolios)
for i in range(n_portfolios):
w = np.random.rand(len(assets)) # random weights
w = w / sum(w) # weights sum to 1
port_return = np.dot(w.T, hist_mean.as_matrix()) * 250 # annualize; 250 business days
port_stdev = np.sqrt(np.dot(w.T, np.dot(hist_cov, w))) * np.sqrt(250) # annualize; 250 business days
port_returns[i] = port_return
port_stdevs[i] = port_stdev
plt.plot(port_stdevs, port_returns, 'o', markersize=6)
plt.xlabel('Expected Volatility')
plt.ylabel('Expected Return')
plt.title('Return and Standard Deviation of Randomly Generated Portfolios')
plt.show()
# Global Minimum Variance (GMV) -- closed form
hist_cov_inv = - np.linalg.inv(hist_cov)
one_vec = np.ones(len(assets))
w_gmv = np.dot(hist_cov_inv, one_vec) / (np.dot(np.transpose(one_vec), np.dot(hist_cov_inv, one_vec)))
w_gmv_df = pd.DataFrame(data = w_gmv).transpose()
w_gmv_df.columns = assets
stdev_gmv = np.sqrt(np.dot(w_gmv.T, np.dot(hist_cov, w_gmv))) * np.sqrt(250)
print(w_gmv_df)
print(stdev_gmv)
# Global Minimum Variance (GMV) -- numerical
P = matrix(hist_cov.as_matrix())
q = matrix(np.zeros((len(assets), 1)))
A = matrix(1.0, (1, len(assets)))
b = matrix(1.0)
w_gmv_v2 = np.array(solvers.qp(P, q, A=A, b=b)['x'])
w_gmv_df_v2 = pd.DataFrame(w_gmv_v2).transpose()
w_gmv_df_v2.columns = assets
stdev_gmv_v2 = np.sqrt(np.dot(w_gmv_v2.T, np.dot(hist_cov, w_gmv_v2))) * np.sqrt(250)
print(w_gmv_df_v2)
print(np.asscalar(stdev_gmv_v2))
# Maximum return -- closed form
mu_o = np.asscalar(np.max(hist_mean)) # MCD
A = np.matrix([[np.asscalar(np.dot(hist_mean.T,np.dot(hist_cov_inv,hist_mean))),
np.asscalar(np.dot(hist_mean.T,np.dot(hist_cov_inv,one_vec)))],
[np.asscalar(np.dot(hist_mean.T,np.dot(hist_cov_inv,one_vec))),
np.asscalar(np.dot(one_vec.T,np.dot(hist_cov_inv,one_vec)))]])
B = np.hstack([np.array(hist_mean),one_vec.reshape(len(assets),1)])
y = np.matrix([mu_o, 1]).T
w_max_ret = np.dot(np.dot(np.dot(hist_cov_inv, B), np.linalg.inv(A)),y)
w_max_ret_df = pd.DataFrame(w_max_ret).T
w_max_ret_df.columns = assets
print(w_max_ret_df)
# Maximum return -- numerical
P = matrix(hist_cov.as_matrix())
q = matrix(np.zeros((len(assets), 1)))
A = matrix(np.hstack([np.array(hist_mean),one_vec.reshape(len(assets),1)]).transpose())
b = matrix([mu_o,1])
w_max_ret_v2 = np.array(solvers.qp(P, q, A=A, b=b)['x'])
w_max_ret_df_v2 = pd.DataFrame(w_max_ret_v2).transpose()
w_max_ret_df_v2.columns = assets
print(w_max_ret_df_v2)
# efficient frontier
N = 100
ef_left = np.asscalar(min(hist_mean.as_matrix())) # minimum return
ef_right = np.asscalar(max(hist_mean.as_matrix())) # maximum return
target_returns = np.linspace(ef_left, ef_right, N) # N target returns
optimal_weights = [ solvers.qp(P, q, A=A, b=matrix([t,1]))['x'] for t in target_returns ] # QP solver
ef_returns = [ np.asscalar(np.dot(w.T, hist_mean.as_matrix())*250) for w in optimal_weights ] #a nnualized
ef_risks = [ np.asscalar(np.sqrt(np.dot(w.T, np.dot(hist_cov, w)) * 250)) for w in optimal_weights ]
plt.plot(port_stdevs, port_returns, 'o', markersize=6, label='Candidate Market Portfolio')
plt.plot(ef_risks, ef_returns, 'y-o', color='green', markersize=8, label='Efficient Frontier')
plt.xlabel('Expected Volatility')
plt.ylabel('Expected Return')
plt.title('Efficient Frontier and Candidate Portfolios')
plt.legend(loc='best')
plt.show()
transition_data = pd.DataFrame(optimal_weights)
transition_data.columns = assets
plt.stackplot(range(50), transition_data.iloc[:50,:].T, labels=assets) # the other half has negative weights
plt.legend(loc='upper left')
plt.margins(0, 0)
plt.title('Allocation Transition Matrix')
plt.show()
# Maximum sharpe -- closed form
r_f = 0.01
w_sharpe = np.dot(hist_cov_inv, hist_mean.as_matrix()-r_f/250) / np.dot(one_vec, np.dot(hist_cov_inv, hist_mean.as_matrix()-r_f/250))
w_sharpe_df = pd.DataFrame(w_sharpe).T
w_sharpe_df.columns = assets
mu_sharpe = np.dot(w_sharpe.T, hist_mean.as_matrix()) * 250
stdev_sharpe = np.sqrt(np.dot(w_sharpe.T, np.dot(hist_cov, w_sharpe))) * np.sqrt(250)
sharpe_ratio = (mu_sharpe-r_f)/stdev_sharpe
print(w_sharpe_df)
print(mu_sharpe)
print(stdev_sharpe)
print(sharpe_ratio)
from scipy.optimize import minimize
fun = lambda w: -1 * np.dot(w.T, hist_mean.as_matrix()*250-r_f) / np.sqrt(np.dot(w.T, np.dot(hist_cov*250, w)))
cons = ({'type': 'eq', 'fun': lambda w: np.dot(w.T, one_vec)-1})
res = minimize(fun, w_gmv, method='SLSQP', constraints=cons)
w_sharpe_v2 = res['x']
w_sharpe_v2_df = pd.DataFrame(w_sharpe_v2).T
w_sharpe_v2_df.columns = assets
mu_sharpe_v2 = np.dot(w_sharpe_v2.T, hist_mean.as_matrix()) * 250
stdev_sharpe_v2 = np.sqrt(np.dot(w_sharpe_v2.T, np.dot(hist_cov, w_sharpe_v2))) * np.sqrt(250)
sharpe_ratio_v2 = (mu_sharpe-r_f)/stdev_sharpe
print(w_sharpe_v2_df)
print(mu_sharpe_v2)
print(stdev_sharpe_v2)
print(sharpe_ratio_v2)