forked from wasmerio/wasmer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
exports_function.rs
111 lines (96 loc) · 3.43 KB
/
exports_function.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
//! A Wasm module can export entities, like functions, memories,
//! globals and tables.
//!
//! This example illustrates how to use exported functions. They come
//! in 2 flavors:
//!
//! 1. Dynamic functions, where parameters and results are of a
//! slice of `Value`,
//! 2. Native function, where parameters and results are statically
//! typed Rust values.
//!
//! You can run the example directly by executing in Wasmer root:
//!
//! ```shell
//! cargo run --example exported-function --release --features "cranelift"
//! ```
//!
//! Ready?
use wasmer::{imports, wat2wasm, Instance, Module, Store, Value};
use wasmer_compiler_cranelift::Cranelift;
use wasmer_engine_jit::JIT;
fn main() -> Result<(), Box<dyn std::error::Error>> {
// Let's declare the Wasm module with the text representation.
let wasm_bytes = wat2wasm(
r#"
(module
(type $sum_t (func (param i32 i32) (result i32)))
(func $sum_f (type $sum_t) (param $x i32) (param $y i32) (result i32)
local.get $x
local.get $y
i32.add)
(export "sum" (func $sum_f)))
"#
.as_bytes(),
)?;
// Create a Store.
// Note that we don't need to specify the engine/compiler if we want to use
// the default provided by Wasmer.
// You can use `Store::default()` for that.
let store = Store::new(&JIT::new(&Cranelift::default()).engine());
println!("Compiling module...");
// Let's compile the Wasm module.
let module = Module::new(&store, wasm_bytes)?;
// Create an empty import object.
let import_object = imports! {};
println!("Instantiating module...");
// Let's instantiate the Wasm module.
let instance = Instance::new(&module, &import_object)?;
// Here we go.
//
// The Wasm module exports a function called `sum`. Let's get
// it. Note that
//
// ```
// get_function(name)
// ```
//
// is just an alias to
//
// ```
// get::<Function>(name)`.
// ```
let sum = instance.exports.get_function("sum")?;
println!("Calling `sum` function...");
// Let's call the `sum` exported function. The parameters are a
// slice of `Value`s. The results are a boxed slice of `Value`s.
let results = sum.call(&[Value::I32(1), Value::I32(2)])?;
println!("Results: {:?}", results);
assert_eq!(results.to_vec(), vec![Value::I32(3)]);
// That was fun. But what if we can get rid of the `Value`s? Well,
// that's possible with the `NativeFunction` API. The function
// will use native Rust values.
//
// Note that `native` takes 2 generic parameters: `Args` and
// `Rets`, respectively for the parameters and the results. If
// those values don't match the exported function signature, an
// error will be raised.
let sum = sum.native::<(i32, i32), i32>()?;
println!("Calling `sum` function (natively)...");
// Let's call the `sum` exported function. The parameters are
// statically typed Rust values of type `i32` and `i32`. The
// result, in this case particular case, in a unit of type `i32`.
let result = sum.call(1, 2)?;
println!("Results: {:?}", result);
assert_eq!(result, 3);
// Much nicer, isn't it?
//
// Those two API exist because they addres different needs. The
// former has a more dynamic approach, while the second has a more
// static approach.
Ok(())
}
#[test]
fn test_exported_function() -> Result<(), Box<dyn std::error::Error>> {
main()
}