A modern web application that analyzes SEC 8-K filings using AI to provide concise, actionable summaries of company events.
🔗 Live Demo: 8-K Analyzer
- Real-time 8-K Analysis: Fetches and analyzes the latest 8-K filings from SEC EDGAR database
- AI-Powered Summaries: Uses Gemini AI to generate concise, readable summaries
- Multiple View Options:
- 📊 Table View for structured data analysis
- 📝 Card View for easy reading
- Dark Mode Interface: Modern, eye-friendly design
- Responsive Design: Works on desktop and mobile devices
- Frontend: Streamlit
- Backend: Python 3.9
- AI Model: Google Gemini AI
- Data Source: SEC EDGAR Database
- Containerization: Docker
- Deployment: Render
- Python 3.9+
- Docker (optional)
- Google API Key for Gemini AI
-
Clone the repository
git clone <repository-url> cd 8k-analyzer
-
Set up environment variables
cp .env.example .env # Add your Google API key to .env file
-
Install dependencies
pip install -r requirements.txt
-
Run the application
streamlit run streamlit_app.py
-
Build and run using Docker Compose
docker-compose up --build
-
Or using Docker directly
docker build -t 8k-analyzer . docker run -p 8501:8501 --env-file .env 8k-analyzer
8k-analyzer/ ├── streamlit_app.py # Main Streamlit application ├── agent.py # AI processing logic ├── edgar_connector.py # SEC EDGAR integration ├── models.py # Data models ├── config.py # Configuration settings ├── requirements.txt # Python dependencies ├── Dockerfile # Docker configuration ├── docker-compose.yml # Docker Compose configuration └── README.md # Project documentation
Create a .env
file with the following:
GOOGLE_API_KEY=your_gemini_api_key_here
- Visit the application URL.
- Enter a stock ticker (e.g., AAPL, MSFT, ORCL).
- Click "Analyze Filings".
- View the AI-generated summaries in either Table or Card view.
Contributions are welcome! Please feel free to submit a Pull Request.
This project is licensed under the MIT License - see the LICENSE file for details.
- Google Gemini AI for natural language processing.
- SEC EDGAR for providing financial filing data.
- Streamlit for the amazing web framework.
- Render for hosting the application.
For any queries or suggestions, please reach out to:
- Email: [email protected]
- LinkedIn: [https://www.linkedin.com/in/subhadipmondal89]