Stars
【超全golang面试题合集+golang学习指南+golang知识图谱+入门成长路线】 一份涵盖大部分golang程序员所需要掌握的核心知识。常用第三方库(mysql,mq,es,redis等)+机器学习库+算法库+游戏库+开源框架+自然语言处理nlp库+网络库+视频库+微服务框架+视频教程+音频音乐库+图形图片库+物联网库+地理位置信息+嵌入式脚本库+编译器库+数据库+金融库+电子邮件库…
「Java学习+面试指南」一份涵盖大部分 Java 程序员所需要掌握的核心知识。准备 Java 面试,首选 JavaGuide!
Python面试通关宝典,秋招、春招的小伙伴✿✿ヽ(°▽°)ノ✿),有面Python开发方向的,看这一个repo就够啦😘
12-class joint frequency-phase modulated SSVEP dataset for estimating online BCI performance
CNN-Former model with EEG-ME for SSVEP classification
Code to accompany our International Conference on Pattern Recognition (ICPR) paper entitled - Leveraging Synthetic Subject Invariant EEG Signals for Zero Calibration BCI.
Using DCGAN, WGAN & WGAN-GP in Augmentation of EEG data for BCIs
Using multi-task learning to capture signals simultaneously from the fovea efficiently and the neighboring targets in the peripheral vision generate a visual response map. A calibration-free user-i…
python code for Independent Component Analysis
From scratch Python implementation of the fast ICA algorithm.
This repository is provided for replicating the canonical classifier of SSVEP signals.
This repo is created to provide some state-of-the-art (SOTA) deep learning-based classifier for SSVEP decoding.
Official Repository of 'A Deep Neural Network for SSVEP-Based Brain-Computer Interfaces'
NeuroGNN is a state-of-the-art framework for precise seizure detection and classification from EEG data. It employs dynamic Graph Neural Networks (GNNs) to capture intricate spatial, temporal, sema…
[IEEE J-BHI-2024] A Convolutional Transformer to decode mental states from Electroencephalography (EEG) for Brain-Computer Interfaces (BCI)
[ICLR 2024 spotlight] Large Brain Model for Learning Generic Representations with Tremendous EEG Data in BCI
[MICCAI 2024 Acceptance] Feature Fusion Based on Mutual-Cross-Attention Mechanism for EEG Emotion Recognition
Linear Predictive Coding based Tokenizer for self-supervised learning of time series via BERT. Article: https://arxiv.org/abs/2408.07292
We propose LightCNN, a lightweight CNN architecture designed for efficient and effective Parkinson's disease classification using EEG data. Article: https://doi.org/10.48550/arXiv.2408.10457
Global Adaptive Transformer for Cross-Subject EEG Classification.
EEG Transformer 2.0. i. Convolutional Transformer for EEG Decoding. ii. Novel visualization - Class Activation Topography.