Skip to content

201501011129/CV_PaperDaily

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Notice!

Busy with recent things , I'll update without day.

Notes are attached to raw PDF files to save time .

CV--PaperDaily

知乎论文阅读专栏 个人博客 其他
ming71 论文笔记入口 chaser CSDN

Update CV papers here everday .
The contents include but are not limited to Object detection , Semantic segmentation , and other papers about deep learning . Comments are welcome , and you can e-mail me by [email protected] .

Paper reading

Divided by Conference & Journal .

Reordered via year of publications from now on, unclassified papers are preprints on arXiv .


2020

  • [CVPR] PolarMask : Single Shot Instance Segmentation with Polar Representation
  • [CVPR] Revisiting the Sibling Head in Object Detector
  • [CVPR] Delving into Online High-quality Anchors Mining for Detecting Outer Faces
  • [CVPR] Multiple Anchor Learning for Visual Object Detection
  • [CVPR] Detection in Crowded Scenes One Proposal, Multiple Predictions
  • [CVPR] Learning from Noisy Anchors for One-stage Object Detection
  • [ECCV] Dynamic R-CNN : Towards High Quality Object Detection via Dynamic Training
  • [AAAI] Distance-IoU
  • [AAAI] Progressive Feature Polishing Network for Salient Object Detection
  • [Neurocomputing] Recent Advances in Deep Learning for Object Detection
  • [Neurocomputing] Single-Shot Bidirectional Pyramid Networks for High-Quality Object Detection
  • [WACV] Propose-and-Attend Single Shot Detector
  • [WACV] Improving Object Detection with Inverted Attention
  • [BMVC] Cascade RetinaNet: Maintaining Consistency for Single-Stage Object Detection
  • Scale-Invariant Multi-Oriented Text Detection in Wild Scene Images
  • Cross-layer Feature Pyramid Network for Salient Object Detection
  • FeatureNMS: Non-Maximum Suppression by Learning Feature Embeddings
  • Objects detection for remote sensing images based on polar coordinates
  • Conditional Convolutions for Instance Segmentation
  • 1st Place Solutions for OpenImage2019 -- Object Detection and Instance Segmentation
  • Extended Feature Pyramid Network for Small Object Detection
  • Joint Anchor-Feature Refinement for Real-Time Accurate Object Detection in Images and Videos
  • Location-Aware Feature Selection for Scene Text Detection
  • Feature Pyramid Grids

2019

  • [AAAI] M2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid
  • [AAAI] Gradient Harmonized Single-stage Detector
  • [CVPR] Libra R-CNN: Towards Balanced Learning for Object Detection
  • [CVPR] Assisted Excitation of Activations: A Learning Technique to Improve Object
  • [CVPR] Borrow from Anywhere Pseudo Multi-modal Object Detection in Thermal Imagery
  • [CVPR] Region Proposal by Guided Anchoring
  • [CVPR] Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations
  • [CVPR] Panoptic Segmentation
  • [CVPR] Learning Instance Activation Maps for Weakly Supervised Instance Segmentation
  • [CVPR] Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression
  • [CVPR] ScratchDet : Training Single-Shot Object Detectors
  • [CVPR] Dual Attention Network for Scene Segmentation
  • [CVPR] Softer-NMS: Rethinking Bounding Box Regression for Accurate Object Detection
  • [CVPR] Spatial-aware Graph Relation Network for Large-scale Object Detection
  • [CVPR] Learning RoI Transformer for Detecting Oriented Objects in Aerial Images
  • [ICCV] InstaBoost: Boosting Instance Segmentation via Probability Map Guided
  • [ICCV] Scale-Aware Trident Networks for Object Detection
  • [ICCV] EGNet: Edge Guidance Network for Salient Object Detection
  • [ICCV] ThunderNet: Towards Real-time Generic Object Detection
  • [ICCV] FCOS: Fully Convolutional One-Stage Object Detection
  • [ICCV] Gaussian YOLOv3: An Accurate and Fast Object Detector Using Localization Uncertainty for Autonomous Driving
  • [ICCV] Towards More Robust Detection for Small, Cluttered and Rotated Objects
  • [ICCV] Dynamic Multi-scale Filters for Semantic Segmentation
  • [ICCV] Matrix Nets: A New Deep Architecture for Object Detection
  • [ICML] Making Convolutional Networks Shift-Invariant Again
  • [ICML] How much real data do we actually need: Analyzing object detection performance using synthetic and real data
  • [NeurIPS] FreeAnchor Learning to Match Anchors for Visual Object Detection
  • [NeurIPS] Cascade RPN Delving into High-Quality Region Proposal Network with Adaptive Convolution
  • [ICLR] Why do deep convolutional networks generalize so poorly to small image transformations?
  • [ICLR] ImageNet-trained CNNs are biased towards texture: increasing shape bias improves accuracy and robustness
  • [ICLR] Approximating CNNs with Bag-of-local-Features models works surprisingly well on ImageNet
  • [IJCAI] Omnidirectional Scene Text Detection with Sequential-free Box Discretization
  • [BMVC] Rethinking Classification and Localization for Cascade R-CNN
  • [ICIP] SSSDET: Simple Short and Shallow Network for Resource Efficient Vehicle Detection in Aerial Scenes
  • [IEEE Access] A Real-Time Scene Text Detector with Learned Anchor
  • [J. Big Data] A survey on Image Data Augmentation for Deep Learning
  • [IEEE Trans Geosci Remote Sens] CAD-Net: A Context-Aware Detection Network for Objects in Remote Sensing Imagery
  • [ICTAI] Twin Feature Pyramid Networks for Object Detection
  • MMDetection: Open MMLab Detection Toolbox and Benchmark
  • Double-Head RCNN: Rethinking Classification and Localization for Object Detection
  • Learning Data Augmentation Strategies for Object Detection
  • A Preliminary Study on Data Augmentation of Deep Learning for Image Classification
  • Bag of Freebies for Training Object Detection Neural Networks
  • Natural Adversarial Examples
  • Needles in Haystacks: On Classifying Tiny Objects in Large Images
  • CBNet: A Novel Composite Backbone Network Architecture for Object Detection
  • Light-Head R-CNN: In Defense of Two-Stage Object Detector
  • R3Det Refined Single-Stage Detector with Feature Refinement for Rotating Object
  • Deep Learning for 2D and 3D Rotatable Data An Overview of Methods
  • Is Sampling Heuristics Necessary in Training Deep Object Detectors
  • IENet: Interacting Embranchment One Stage Anchor Free Detector for Orientation Aerial Object Detection
  • Ship Detection: An Improved YOLOv3 Method
  • AugFPN: Improving Multi-scale Feature Learning for Object Detection
  • Multi-Scale Attention Network for Crowd Counting
  • Revisiting Feature Alignment for One-stage Object Detection
  • Consistent Optimization for Single-Shot Object Detection
  • Learning from Noisy Anchors for One-stage Object Detection

2018

  • [CVPR] Cascade R-CNN: Delving into High Quality Object Detection
  • [CVPR] Path Aggregation Network for Instance Segmentation
  • [CVPR] Scale-Transferable Object Detection
  • [CVPR] DOTA: A Large-scale Dataset for Object Detection in Aerial Images
  • [CVPR] R2CNN: Rotational Region CNN for Orientation Robust Scene Text Detection
  • [CVPR] Pseudo Mask Augmented Object Detection
  • [CVPR] Single-Shot Object Detection with Enriched Semantics
  • [CVPR] Weakly Supervised Instance Segmentation using Class Peak Response
  • [CVPR] Single-Shot Refinement Neural Network for Object Detection
  • [CVPR] Squeeze-and-Excitation Networks
  • [CVPR] An Analysis of Scale Invariance in Object Detection
  • [CVPR] Rotation Sensitive Regression for Oriented Scene Text Detection
  • [ECCV] DetNet: A Backbone network for Object Detection
  • [ECCV] Receptive Field Block Net for Accurate and Fast Object Detection
  • [ECCV] Modeling Visual Context is Key to Augmenting Object Detection Datasets
  • [ECCV] Learning to Segment via Cut-and-Paste
  • [ECCV] Acquisition of Localization Confidence for Accurate Object Detection
  • [ECCV] Deep Feature Pyramid Reconfiguration for Object Detection
  • [ICLR] Multi-Scale Dense Convolutional Networks for Efficient Prediction
  • [ICANN] Further advantages of data augmentation on convolutional neural networks
  • [IJCV] What Makes Good Synthetic Training Data for Learning Disparity and Optical Flow Estimation?
  • [WACV] Understanding Convolution for Semantic Segmentation
  • [ACCV] Reverse Densely Connected Feature Pyramid Network for Object Detection
  • [BMVC] Enhancement of SSD by concatenating feature maps for object detection
  • [IJAC] An Overview of Contour Detection Approaches
  • [Remote Sens.] Automatic Ship Detection of Remote Sensing Images from Google Earth in Complex Scenes Based on Multi-Scale Rotation Dense Feature Pyramid Networks
  • [IEEE Trans Multimedia] Arbitrary-oriented scene text detection via rotation proposals
  • [J Mach Learn Res] Neural Architecture Search: A Survey
  • [VISIGRAPP] Learning Transformation Invariant Representations with Weak Supervision
  • MDSSD: Multi-scale Deconvolutional Single Shot Detector for Small Objects
  • Data Augmentation by Pairing Samples for Images Classification
  • RAM: Residual Attention Module for Single Image Super-Resolution

2017

  • [AAAI] Weakly Supervised Semantic Segmentation Using Superpixel Pooling Network
  • [CVPR] Feature Pyramid Networks for Object Detection
  • [CVPR] Not All Pixels Are Equal: Difficulty-Aware Semantic Segmentation via Deep Layer Cascade
  • [CVPR] Simple Does It: Weakly Supervised Instance and Semantic Segmentation
  • [CVPR] Oriented Response Networks
  • [ICCV] Single shot scale-invariant face detector
  • [ICCV] Focal Loss for Dense Object Detection
  • [ICCV] Cut, Paste and Learn: Surprisingly Easy Synthesis for Instance Detection
  • [ICCV] Grad-CAM Visual Explanations From Deep Networks via Gradient-Based Localization
  • [ICCV] Single Shot Text Detector with Regional Attention
  • [ICLR] Dataset Augmentationin In Feature Space
  • [ICIP] Rotated region based CNN for ship detection
  • [IEEE Acess] Smart Augmentation: Learning an Optimal Data Augmentation Strategy
  • [ICPRAM] A High Resolution Optical Satellite Image Dataset for Ship Recognition and Some New Baselines
  • FSSD: Feature Fusion Single Shot Multibox Detector
  • Improved Regularization of Convolutional Neural Networks with Cutout
  • The Effectiveness of Data Augmentation in Image Classification using Deep Learning

2016

  • [CVPR] Learning Deep Features for Discriminative Localization
  • [ECCV] Contextual Priming and Feedback for Faster R-CNN
  • [NIPS] R-FCN: Object Detection via Region-based Fully Convolutional Networks
  • [DICTA] Understanding data augmentation for classification: when to warp?
  • [IEEE Geosci. Remote. Sens. Lett.] Ship Rotated Bounding Box Space for Ship Extraction From High-Resolution Optical Satellite Images With Complex Backgrounds
  • Beyond Skip Connections: Top-Down Modulation for Object Detection

2015

  • [ICDAR] ICDAR 2015 competition on Robust Reading

2009

  • [ICML] Curriculum learning

About

CV 论文笔记

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published