-
Notifications
You must be signed in to change notification settings - Fork 0
/
export.py
50 lines (38 loc) · 1.8 KB
/
export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""export checkpoint file into air, onnx, mindir models
suggest run as python export.py --filename cnnctc --file_format MINDIR --ckpt_file [ckpt file path]
"""
import os
import numpy as np
from mindspore import Tensor, context, load_checkpoint, export
import mindspore.common.dtype as mstype
from src.cnn_ctc import CNNCTC_Model
from src.model_utils.config import config
from src.model_utils.moxing_adapter import moxing_wrapper
context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target)
if config.device_target == "Ascend":
context.set_context(device_id=config.device_id)
def modelarts_pre_process():
config.file_name = os.path.join(config.output_path, config.file_name)
@moxing_wrapper(pre_process=modelarts_pre_process)
def model_export():
net = CNNCTC_Model(config.NUM_CLASS, config.HIDDEN_SIZE, config.FINAL_FEATURE_WIDTH)
load_checkpoint(config.ckpt_file, net=net)
bs = config.TEST_BATCH_SIZE
input_data = Tensor(np.zeros([bs, 3, config.IMG_H, config.IMG_W]), mstype.float32)
export(net, input_data, file_name=config.file_name, file_format=config.file_format)
if __name__ == '__main__':
model_export()