DKPLM: Decomposable Knowledge-enhanced Pre-trained Language Model for Natural Language Understanding
if [ ! -f ./train_corpus.txt ]; then
wget http://atp-modelzoo-sh.oss-cn-shanghai.aliyuncs.com/release/tutorials/language_modeling/dkplm/train_corpus.txt
fi
if [ ! -f ./dev_corpus.json ]; then
wget http://atp-modelzoo-sh.oss-cn-shanghai.aliyuncs.com/release/tutorials/language_modeling/dkplm/dev_corpus.txt
fi
if [ ! -f ./entity_emb.txt ]; then
wget http://atp-modelzoo-sh.oss-cn-shanghai.aliyuncs.com/release/tutorials/language_modeling/dkplm/entity_emb.txt
fi
if [ ! -f ./rel_emb.txt ]; then
wget http://atp-modelzoo-sh.oss-cn-shanghai.aliyuncs.com/release/tutorials/language_modeling/dkplm/rel_emb.txt
fi
#! /bin/bash
export CUDA_VISIBLE_DEVICES=$1
MASTER_ADDR=localhost
MASTER_PORT=6009
GPUS_PER_NODE=1
NNODES=1
NODE_RANK=0
DISTRIBUTED_ARGS="--nproc_per_node $GPUS_PER_NODE --nnodes $NNODES --node_rank $NODE_RANK --master_addr $MASTER_ADDR --master_port $MASTER_PORT"
python -m torch.distributed.launch $DISTRIBUTED_ARGS ../examples/application_tutorials/language_modeling/main.py \
--mode=train \
--worker_gpu=1 \
--tables=train_corpus.txt,dev_corpus.txt \
--learning_rate=1e-4 \
--epoch_num=1 \
--logging_steps=100 \
--save_checkpoint_steps=500 \
--sequence_length=128 \
--train_batch_size=32 \
--checkpoint_dir=./lm_models \
--app_name=language_modeling \
--user_defined_parameters='
pretrain_model_name_or_path=alibaba-pai/pai-dkplm-medical-base-zh entity_emb_file=entity_emb.txt rel_emb_file=rel_emb.txt
'
If you use this code, please help to cite the paper. Thanks.
@article{DBLP:journals/corr/abs-2112-01047,
author = {Taolin Zhang and
Chengyu Wang and
Nan Hu and
Minghui Qiu and
Chengguang Tang and
Xiaofeng He and
Jun Huang},
title = {{DKPLM:} Decomposable Knowledge-enhanced Pre-trained Language Model
for Natural Language Understanding},
journal = {CoRR},
volume = {abs/2112.01047},
year = {2021},
url = {https://arxiv.org/abs/2112.01047},
eprinttype = {arXiv},
eprint = {2112.01047},
timestamp = {Tue, 07 Dec 2021 12:15:54 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2112-01047.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}