forked from roconnor-blockstream/fiat-crypto
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathNomega.v
73 lines (59 loc) · 2.01 KB
/
Nomega.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
(* Make [omega] work for [N] *)
Require Import Coq.Arith.Arith Coq.omega.Omega Coq.NArith.NArith.
Global Set Asymmetric Patterns.
Local Open Scope N_scope.
Hint Rewrite Nplus_0_r nat_of_Nsucc nat_of_Nplus nat_of_Nminus
N_of_nat_of_N nat_of_N_of_nat
nat_of_P_o_P_of_succ_nat_eq_succ nat_of_P_succ_morphism : N.
Theorem nat_of_N_eq : forall n m,
nat_of_N n = nat_of_N m
-> n = m.
intros ? ? H; apply (f_equal N_of_nat) in H;
autorewrite with N in *; assumption.
Qed.
Theorem Nneq_in : forall n m,
nat_of_N n <> nat_of_N m
-> n <> m.
congruence.
Qed.
Theorem Nneq_out : forall n m,
n <> m
-> nat_of_N n <> nat_of_N m.
intuition.
match goal with H0 : _ |- _ => apply nat_of_N_eq in H0; tauto end.
Qed.
Theorem Nlt_out : forall n m, n < m
-> (nat_of_N n < nat_of_N m)%nat.
unfold Nlt; intros ?? H.
rewrite nat_of_Ncompare in H.
apply nat_compare_Lt_lt; assumption.
Qed.
Theorem Nlt_in : forall n m, (nat_of_N n < nat_of_N m)%nat
-> n < m.
unfold Nlt; intros.
rewrite nat_of_Ncompare.
apply (proj1 (nat_compare_lt _ _)); assumption.
Qed.
Theorem Nge_out : forall n m, n >= m
-> (nat_of_N n >= nat_of_N m)%nat.
unfold Nge; intros ?? H.
rewrite nat_of_Ncompare in H.
apply nat_compare_ge; assumption.
Qed.
Theorem Nge_in : forall n m, (nat_of_N n >= nat_of_N m)%nat
-> n >= m.
unfold Nge; intros.
rewrite nat_of_Ncompare.
apply nat_compare_ge; assumption.
Qed.
Ltac nsimp H := simpl in H; repeat progress (autorewrite with N in H; simpl in H).
Ltac pre_nomega :=
try (apply nat_of_N_eq || apply Nneq_in || apply Nlt_in || apply Nge_in); simpl;
repeat (progress autorewrite with N; simpl);
repeat match goal with
| [ H : _ <> _ |- _ ] => apply Nneq_out in H; nsimp H
| [ H : _ = _ -> False |- _ ] => apply Nneq_out in H; nsimp H
| [ H : _ |- _ ] => (apply (f_equal nat_of_N) in H
|| apply Nlt_out in H || apply Nge_out in H); nsimp H
end.
Ltac nomega := pre_nomega; omega || (unfold nat_of_P in *; simpl in *; omega).