-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathmain_ensemble_test.py
executable file
·138 lines (116 loc) · 4.71 KB
/
main_ensemble_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
import sys
import pprint
import random
import time
import tqdm
import logging
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.multiprocessing as mp
import torch.distributed as dist
import losses
import models
from models.att_ensemble_model import AttEnsembleTransformer
import datasets
import lib.utils as utils
from lib.utils import AverageMeter
from optimizer.optimizer import Optimizer
from evaluation.evaler import Evaler
from scorer.scorer import Scorer
from lib.config import cfg, cfg_from_file
class EnsembleTester(object):
def __init__(self, args):
super(EnsembleTester, self).__init__()
self.args = args
self.device = torch.device("cuda")
self.setup_logging()
self.setup_network()
self.val_evaler = Evaler(
eval_ids=cfg.DATA_LOADER.VAL_ID,
gv_feat=cfg.DATA_LOADER.VAL_GV_FEAT,
att_feats=cfg.DATA_LOADER.VAL_ATT_FEATS,
eval_annfile=cfg.INFERENCE.VAL_ANNFILE
)
self.test_evaler = Evaler(
eval_ids=cfg.DATA_LOADER.TEST_ID,
gv_feat=cfg.DATA_LOADER.TEST_GV_FEAT,
att_feats=cfg.DATA_LOADER.TEST_ATT_FEATS,
eval_annfile=cfg.INFERENCE.TEST_ANNFILE
)
def setup_logging(self):
self.logger = logging.getLogger(cfg.LOGGER_NAME)
self.logger.setLevel(logging.INFO)
ch = logging.StreamHandler(stream=sys.stdout)
ch.setLevel(logging.INFO)
formatter = logging.Formatter("[%(levelname)s: %(asctime)s] %(message)s")
ch.setFormatter(formatter)
self.logger.addHandler(ch)
if not os.path.exists(cfg.ROOT_DIR):
os.makedirs(cfg.ROOT_DIR)
fh = logging.FileHandler(os.path.join(cfg.ROOT_DIR, 'OfflineTest_' + cfg.LOGGER_NAME + '.txt'))
fh.setLevel(logging.INFO)
fh.setFormatter(formatter)
self.logger.addHandler(fh)
def setup_network(self):
# 创建集成模型的每一个子模型,并导入模型参数
_models = []
_model_folders = self.args.model_folders
_model_resumes = self.args.model_resumes
assert len(_model_folders) == len(_model_resumes)
for i in range(len(_model_folders)):
if self.args.model_types is None:
tmp_type = cfg.MODEL.TYPE
else:
tmp_type = self.args.model_types[i]
tmp = models.create(tmp_type)
tmp = torch.nn.DataParallel(tmp).cuda()
tmp_snapshot_file = os.path.join(_model_folders[i],
"snapshot",
"caption_model_"+str(_model_resumes[i])+".pth")
self.logger.info('sub model loaded from %s' % tmp_snapshot_file)
tmp.load_state_dict(torch.load(tmp_snapshot_file,
map_location=lambda storage, loc: storage))
_models.append(tmp)
weights = None
if self.args.weights is not None:
weights = [float(_) for _ in self.args.weights]
model = AttEnsembleTransformer(_models, weights=weights)
self.model = torch.nn.DataParallel(model).cuda()
# self.model.eval()
def eval(self, epoch):
val_res = self.val_evaler(self.model, 'val_' + str(epoch))
self.logger.info('######## Epoch (VAL) ' + str(epoch) + ' ########')
self.logger.info(str(val_res))
test_res = self.test_evaler(self.model, 'test_' + str(epoch))
self.logger.info('######## Epoch (TEST) ' + str(epoch) + ' ########')
self.logger.info(str(test_res))
def snapshot_path(self, name, epoch):
snapshot_folder = os.path.join(cfg.ROOT_DIR, 'snapshot')
return os.path.join(snapshot_folder, name + "_" + str(epoch) + ".pth")
def parse_args():
"""
Parse input arguments
"""
parser = argparse.ArgumentParser(description='Image Captioning')
parser.add_argument('--folder', dest='folder', default=None, type=str)
parser.add_argument('--model_folders', nargs='+', required=True, default=None)
parser.add_argument("--model_resumes", nargs='+', required=True, default=None)
parser.add_argument('--model_types', nargs='+', required=False, default=None)
parser.add_argument("--weights", nargs='+', required=False, default=None)
if len(sys.argv) == 1:
parser.print_help()
sys.exit(1)
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
print('Called with args:')
print(args)
if args.folder is not None:
cfg_from_file(os.path.join(args.folder, 'config.yml'))
cfg.ROOT_DIR = args.folder
tester = EnsembleTester(args)
tester.eval("Ensemble Models")