forked from MIT-SPARK/MiDiffusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlivingrooms_mixed.yaml
85 lines (75 loc) · 1.88 KB
/
livingrooms_mixed.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
data:
dataset_type: "cached_threedfront"
encoding_type: "cached_diffusion_cosin_angle_wocm"
dataset_directory: "livingroom"
annotation_file: "livingroom_threed_front_splits.csv"
augmentations: ["fixed_rotations"]
train_stats: "dataset_stats.txt"
room_layout_size: "64,64"
network:
type: "diffusion_scene_layout_mixed"
# encoding dim
sample_num_points: 21 # max_length
angle_dim: 2
# room mask condition
room_mask_condition: true
room_latent_dim: 64
# position condition
learnable_embedding: true
position_condition: true
position_emb_dim: 64
# diffusion config
time_num: 1000
diffusion_semantic_kwargs:
att_1: 0.99999
att_T: 0.000009
ctt_1: 0.000009
ctt_T: 0.99999
model_output_type: 'x0'
mask_weight: 1
auxiliary_loss_weight: 0.0005
adaptive_auxiliary_loss: True
diffusion_geometric_kwargs:
schedule_type: 'linear'
beta_start: 0.0001
beta_end: 0.02
loss_type: 'mse'
model_mean_type: 'eps'
model_var_type: 'fixedsmall'
# denoising net
net_type: "transformer"
net_kwargs:
seperate_all: True
n_layer: 8
n_embd: 512
n_head: 8
dim_feedforward: 2048
dropout: 0.1
activate: 'GELU'
timestep_type: 'adalayernorm_abs'
mlp_type: 'fc'
feature_extractor:
name: "pointnet_simple"
feat_units: [4, 64, 64, 512, 64]
training:
splits: ["train", "val"]
epochs: 100000
batch_size: 128
save_frequency: 2000
max_grad_norm: 10
# optimizer
optimizer: Adam
weight_decay: 0.0
# schedule
schedule: 'step'
lr: 0.0002
lr_step: 15000
lr_decay: 0.5
validation:
splits: ["test"]
frequency: 100
save_frequency: 1000
batch_size: 128
logger:
type: "wandb"
project: "MiDiffusion"