Skip to content

Latest commit

 

History

History
164 lines (127 loc) · 5.62 KB

README.md

File metadata and controls

164 lines (127 loc) · 5.62 KB

MOPA: Modular Object Navigation with PointGoal Agents

This is an implementation of our paper MOPA: Modular Object Navigation with PointGoal Agents. webpage

Architecture Overview

Installing dependencies:

This code is tested on python 3.8.13, pytorch v1.11.0 and CUDA V11.2. Install pytorch from https://pytorch.org/ according to your machine configuration.

conda create -n mon python=3.8 cmake=3.14.0
conda activate mon

This code uses forked versions of habitat-sim and habitat-lab.

Installing habitat-sim:

For headless machines with GPU
git clone [email protected]:sonia-raychaudhuri/habitat-sim.git
cd habitat-sim
python -m pip install -r requirements.txt
python setup.py build_ext --parallel 4 install --headless --bullet 
For machines with attached display
git clone [email protected]:sonia-raychaudhuri/habitat-sim.git
cd habitat-sim
python -m pip install -r requirements.txt
python setup.py build_ext --parallel 4 install --bullet 

Installing habitat-lab:

git clone [email protected]:sonia-raychaudhuri/habitat-lab.git
cd habitat-lab
pip install -e .

Setup

Clone the repository and install the requirements:

git clone [email protected]:3dlg-hcvc/mopa.git
cd mopa
python -m pip install -r requirements.txt

Downloading data and checkpoints

Download HM3D scenes here and place the data in: mopa/data/scene_datasets/hm3d.

Download objects:

wget -O multion_cyl_objects.zip "https://aspis.cmpt.sfu.ca/projects/multion-challenge/2022/challenge/dataset/multion_cyl_objects"
wget -O multion_real_objects.zip "https://aspis.cmpt.sfu.ca/projects/multion-challenge/2022/challenge/dataset/multion_real_objects"

Extract them under mopa/data.

Download the dataset.

# Replace {n} with 1, 3, 5 for 1ON, 3ON & 5ON respectively; Replace {obj_type} with CYL or REAL for Cylinder and Real/Natural objects respectively; Replace {split} with minival, val or train for different data splits.

wget -O {n}_ON_{obj_type}_{split}.zip "https://aspis.cmpt.sfu.ca/projects/multion-challenge/2022/challenge/dataset/{n}_ON_{obj_type}_{split}"

Extract them and place them inside mopa/data in the following format:

mopa/
  data/
    scene_datasets/
      hm3d/
          ...
    multion_cyl_objects/
        ...
    multion_real_objects/
        ...
    5_ON_CYL/
        train/
            content/
                ...
            train.json.gz
        minival/
            content/
                ...
            minival.json.gz
        val/
            content/
                ...
            val.json.gz
    5_ON_REAL/
        train/
            content/
                ...
            train.json.gz
        minival/
            content/
                ...
            minival.json.gz
        val/
            content/
                ...
            val.json.gz

Usage

Pre-trained models

Download the pretrained PointNav model, trained on HM3D here and update the path here and here.

Download the following checkpoints for Object Detection and place under mopa/data/object_detection_models:

wget "https://aspis.cmpt.sfu.ca/projects/multion/mopa/pretrained_models/obj_det_real.zip"
wget "https://aspis.cmpt.sfu.ca/projects/multion/mopa/pretrained_models/obj_det_cylinder.zip"
  wget "https://aspis.cmpt.sfu.ca/projects/multion/mopa/pretrained_models/knn_colors.zip"

Evaluation

Evaluation will run on the 3_ON val set by default.

# For evaluating with OraSem agent on 3ON cylinders dataset
python run.py  --exp-config baselines/config/pointnav/hier_w_proj_ora_sem_map.yaml --run-type eval

# For evaluating with OraSem agent on 3ON real/natural objects dataset
python run.py  --exp-config baselines/config/pointnav/hier_w_proj_ora_sem_map_real.yaml --run-type eval

# For evaluating with PredSem agent on 3ON cylinders dataset
python run.py  --exp-config baselines/config/pointnav/hier_w_proj_pred_sem_map.yaml --run-type eval

# For evaluating with PredSem agent on 3ON real/natural objects dataset
python run.py  --exp-config baselines/config/pointnav/hier_w_proj_pred_sem_map_real.yaml --run-type eval

Citation

Sonia Raychaudhuri, Tommaso Campari, Unnat Jain, Manolis Savva, Angel X. Chang, 2023. MOPA: Modular Object Navigation with PointGoal Agents. PDF

Bibtex

  @misc{raychaudhuri2023mopa,
      title={MOPA: Modular Object Navigation with PointGoal Agents}, 
      author={Sonia Raychaudhuri and Tommaso Campari and Unnat Jain and Manolis Savva and Angel X. Chang},
      year={2023},
      eprint={2304.03696},
      archivePrefix={arXiv},
      primaryClass={cs.RO}
}

Acknowledgements

The members at SFU were supported by Canada CIFAR AI Chair grant, Canada Research Chair grant, NSERC Discovery Grant and a research grant by Facebook AI Research. Experiments at SFU were enabled by support from WestGrid and Compute Canada. This repository is built upon Habitat Lab and multiON.