This is an implementation of our paper MOPA: Modular Object Navigation with PointGoal Agents. webpage
This code is tested on python 3.8.13, pytorch v1.11.0 and CUDA V11.2. Install pytorch from https://pytorch.org/ according to your machine configuration.
conda create -n mon python=3.8 cmake=3.14.0
conda activate mon
This code uses forked versions of habitat-sim and habitat-lab.
git clone [email protected]:sonia-raychaudhuri/habitat-sim.git
cd habitat-sim
python -m pip install -r requirements.txt
python setup.py build_ext --parallel 4 install --headless --bullet
git clone [email protected]:sonia-raychaudhuri/habitat-sim.git
cd habitat-sim
python -m pip install -r requirements.txt
python setup.py build_ext --parallel 4 install --bullet
git clone [email protected]:sonia-raychaudhuri/habitat-lab.git
cd habitat-lab
pip install -e .
Clone the repository and install the requirements:
git clone [email protected]:3dlg-hcvc/mopa.git
cd mopa
python -m pip install -r requirements.txt
Download HM3D scenes here and place the data in: mopa/data/scene_datasets/hm3d
.
Download objects:
wget -O multion_cyl_objects.zip "https://aspis.cmpt.sfu.ca/projects/multion-challenge/2022/challenge/dataset/multion_cyl_objects"
wget -O multion_real_objects.zip "https://aspis.cmpt.sfu.ca/projects/multion-challenge/2022/challenge/dataset/multion_real_objects"
Extract them under mopa/data
.
Download the dataset.
# Replace {n} with 1, 3, 5 for 1ON, 3ON & 5ON respectively; Replace {obj_type} with CYL or REAL for Cylinder and Real/Natural objects respectively; Replace {split} with minival, val or train for different data splits.
wget -O {n}_ON_{obj_type}_{split}.zip "https://aspis.cmpt.sfu.ca/projects/multion-challenge/2022/challenge/dataset/{n}_ON_{obj_type}_{split}"
Extract them and place them inside mopa/data
in the following format:
mopa/
data/
scene_datasets/
hm3d/
...
multion_cyl_objects/
...
multion_real_objects/
...
5_ON_CYL/
train/
content/
...
train.json.gz
minival/
content/
...
minival.json.gz
val/
content/
...
val.json.gz
5_ON_REAL/
train/
content/
...
train.json.gz
minival/
content/
...
minival.json.gz
val/
content/
...
val.json.gz
Download the pretrained PointNav model, trained on HM3D here and update the path here and here.
Download the following checkpoints for Object Detection and place under mopa/data/object_detection_models:
wget "https://aspis.cmpt.sfu.ca/projects/multion/mopa/pretrained_models/obj_det_real.zip"
wget "https://aspis.cmpt.sfu.ca/projects/multion/mopa/pretrained_models/obj_det_cylinder.zip"
wget "https://aspis.cmpt.sfu.ca/projects/multion/mopa/pretrained_models/knn_colors.zip"
Evaluation will run on the 3_ON
val set by default.
# For evaluating with OraSem agent on 3ON cylinders dataset
python run.py --exp-config baselines/config/pointnav/hier_w_proj_ora_sem_map.yaml --run-type eval
# For evaluating with OraSem agent on 3ON real/natural objects dataset
python run.py --exp-config baselines/config/pointnav/hier_w_proj_ora_sem_map_real.yaml --run-type eval
# For evaluating with PredSem agent on 3ON cylinders dataset
python run.py --exp-config baselines/config/pointnav/hier_w_proj_pred_sem_map.yaml --run-type eval
# For evaluating with PredSem agent on 3ON real/natural objects dataset
python run.py --exp-config baselines/config/pointnav/hier_w_proj_pred_sem_map_real.yaml --run-type eval
Sonia Raychaudhuri, Tommaso Campari, Unnat Jain, Manolis Savva, Angel X. Chang, 2023. MOPA: Modular Object Navigation with PointGoal Agents. PDF
@misc{raychaudhuri2023mopa,
title={MOPA: Modular Object Navigation with PointGoal Agents},
author={Sonia Raychaudhuri and Tommaso Campari and Unnat Jain and Manolis Savva and Angel X. Chang},
year={2023},
eprint={2304.03696},
archivePrefix={arXiv},
primaryClass={cs.RO}
}
The members at SFU were supported by Canada CIFAR AI Chair grant, Canada Research Chair grant, NSERC Discovery Grant and a research grant by Facebook AI Research. Experiments at SFU were enabled by support from WestGrid and Compute Canada. This repository is built upon Habitat Lab and multiON.