forked from hadley/adv-r
-
Notifications
You must be signed in to change notification settings - Fork 0
/
verhoeff.Rmd
204 lines (161 loc) · 4.44 KB
/
verhoeff.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
---
title: Untitled
output:
md_document: {}
---
We begin by defining the lookup matrices. I've laid them out in a way that should make them easier to check against a reference, e.g. http://en.wikipedia.org/wiki/Verhoeff_algorithm.
```{r}
d5_mult <- matrix(as.integer(c(
0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
1, 2, 3, 4, 0, 6, 7, 8, 9, 5,
2, 3, 4, 0, 1, 7, 8, 9, 5, 6,
3, 4, 0, 1, 2, 8, 9, 5, 6, 7,
4, 0, 1, 2, 3, 9, 5, 6, 7, 8,
5, 9, 8, 7, 6, 0, 4, 3, 2, 1,
6, 5, 9, 8, 7, 1, 0, 4, 3, 2,
7, 6, 5, 9, 8, 2, 1, 0, 4, 3,
8, 7, 6, 5, 9, 3, 2, 1, 0, 4,
9, 8, 7, 6, 5, 4, 3, 2, 1, 0
)), ncol = 10, byrow = TRUE)
d5_perm <- matrix(as.integer(c(
0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
1, 5, 7, 6, 2, 8, 3, 0, 9, 4,
5, 8, 0, 3, 7, 9, 6, 1, 4, 2,
8, 9, 1, 6, 0, 4, 3, 5, 2, 7,
9, 4, 5, 3, 1, 2, 6, 8, 7, 0,
4, 2, 8, 6, 5, 7, 3, 9, 0, 1,
2, 7, 9, 3, 8, 0, 6, 4, 1, 5,
7, 0, 4, 6, 9, 1, 3, 2, 5, 8
)), ncol = 10, byrow = TRUE)
d5_inv <- as.integer(c(0, 4, 3, 2, 1, 5, 6, 7, 8, 9))
```
Next, we'll define the check function, and try it out with a test input. I've followed the derivation in wikipedia as closely as possible.
```{r}
p <- function(i, n_i) {
d5_perm[(i %% 8) + 1, n_i + 1] + 1
}
d <- function(c, p) {
d5_mult[c + 1, p]
}
verhoeff <- function(x) {
#split and convert to numbers
digs <- strsplit(as.character(x), "")[[1]]
digs <- as.numeric(digs)
digs <- rev(digs) ## right to left algorithm
## apply algoritm - note 1-based indexing in R
c <- 0
for (i in 1:length(digs)) {
c <- d(c, p(i, digs[i]))
}
d5_inv[c + 1]
}
verhoeff(142857)
```
This function is fundamentally iterative, as each iteration depends on the value of the previous. This means that we're unlikely to be able to vectorise in R, so if we want to vectorise, we'll need to use Rcpp.
However, before we turn to that, it's worth exploring if we can do the initial split faster. First we do a little microbenchmark to see if it's worth bothering:
```{r}
library(microbenchmark)
digits <- function(x) {
digs <- strsplit(as.character(x), "")[[1]]
digs <- as.numeric(digs)
rev(digs)
}
microbenchmark(
digits(142857),
verhoeff(142857)
)
```
It looks like it! On my computer, `verhoeff_prepare()` accounts for about 50% of the run time. A little searching on stackoverflow reveals another approach to turning a [number into digits](http://stackoverflow.com/questions/18786432):
```{r}
digits2 <- function(x) {
n <- floor(log10(x))
x %/% 10^(0:n) %% 10
}
digits2(12345)
microbenchmark(
digits(142857),
digits2(142857)
)
```
`digits2()` is a lot faster than `digits()` but it has limited impact on the whole runtime.
```{r}
verhoeff2 <- function(x) {
digs <- digits2(x)
c <- 0
for (i in 1:length(digs)) {
c <- d(c, p(i, digs[i]))
}
d5_inv[c + 1]
}
verhoeff2(142857)
microbenchmark(
verhoeff(142857),
verhoeff2(142857)
)
```
It's always worth checking out the impact of byte-code compilation:
```{r}
verhoeff_c <- compiler::cmpfun(verhoeff)
verhoeff2_c <- compiler::cmpfun(verhoeff2)
microbenchmark(
verhoeff(142857),
verhoeff_c(142857),
verhoeff2(142857),
verhoeff2_c(142857)
)
```
It looks like it speeds it up by around 10%, which is fairly typical.
To make it even faster we could try C++.
```{r, engine='Rcpp'}
#include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
int verhoeff3_c(IntegerVector digits, IntegerMatrix mult, IntegerMatrix perm,
IntegerVector inv) {
int n = digits.size();
int c = 0;
for(int i = 0; i < n; ++i) {
int p = perm(i % 8, digits[i]);
c = mult(c, p);
}
return inv[c];
}
```
```{r}
verhoeff3 <- function(x) {
verhoeff3_c(digits(x), d5_mult, d5_perm, d5_inv)
}
verhoeff3(142857)
microbenchmark(
verhoeff2(142857),
verhoeff3(142857)
)
```
That doesn't yield much of an improvement. Maybe we can do better if we pass the number to C++ and process the digits in a loop:
```{r, engine = "Rcpp"}
#include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
int verhoeff4_c(int number, IntegerMatrix mult, IntegerMatrix perm,
IntegerVector inv) {
int c = 0;
int i = 0;
for (int i = 0; number > 0; ++i, number /= 10) {
int p = perm(i % 8, number % 10);
c = mult(c, p);
}
return inv[c];
}
```
```{r}
verhoeff4 <- function(x) {
verhoeff4_c(x, d5_mult, d5_perm, d5_inv)
}
verhoeff4(142857)
microbenchmark(
verhoeff2(142857),
verhoeff3(142857),
verhoeff4(142857)
)
```
And we get a pay off: `verhoeff4()` is about 5 times faster than `verhoeff2()`.