Skip to content

Commit fc56a69

Browse files
authored
fix dead link (PaddlePaddle#798)
1 parent 25ee526 commit fc56a69

File tree

4 files changed

+15
-15
lines changed

4 files changed

+15
-15
lines changed

README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -47,7 +47,7 @@ PaddleSlim支持以下功能,也支持自定义量化、裁剪等功能。
4747
<th><a href="https://github.com/PaddlePaddle/PaddleSlim/blob/release/2.0.0/docs/zh_cn/tutorials/quant/overview.md">Quantization</a></th>
4848
<th><a href="https://github.com/PaddlePaddle/PaddleSlim/blob/release/2.0.0/docs/zh_cn/tutorials/pruning/overview.md">Pruning</a></th>
4949
<th><a href="https://github.com/PaddlePaddle/PaddleSlim/blob/release/2.0.0/docs/zh_cn/tutorials/nas/overview.md">NAS</a></th>
50-
<th><a href="">Distilling</a></th>
50+
<th><a href="https://github.com/PaddlePaddle/PaddleSlim/tree/release/2.0.0/docs/zh_cn/tutorials">Distilling</a></th>
5151
</tr>
5252
<tr valign="top">
5353
<td>

README_en.md

+12-12
Original file line numberDiff line numberDiff line change
@@ -96,7 +96,7 @@ pip install paddleslim==1.2.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
9696

9797
- [Algorithm Background](https://paddleslim.readthedocs.io/en/latest/intro_en.html): Introduce the background of quantization, pruning, distillation, NAS.
9898

99-
- [PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection/tree/master/slim): Introduce how to use PaddleSlim in PaddleDetection library.
99+
- [PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/slim): Introduce how to use PaddleSlim in PaddleDetection library.
100100

101101
- [PaddleSeg](https://github.com/PaddlePaddle/PaddleSeg/tree/develop/slim): Introduce how to use PaddleSlim in PaddleSeg library.
102102

@@ -112,9 +112,9 @@ Dataset: ImageNet2012; Model: MobileNetV1;
112112

113113
|Method |Accuracy(baseline: 70.91%) |Model Size(baseline: 17.0M)|
114114
|:---:|:---:|:---:|
115-
| Knowledge Distillation(ResNet50)| [+1.06%]() |-|
116-
| Knowledge Distillation(ResNet50) + int8 quantization |[+1.10%]()| [-71.76%]()|
117-
| Pruning(FLOPs-50%) + int8 quantization|[-1.71%]()|[-86.47%]()|
115+
| Knowledge Distillation(ResNet50)| +1.06% |-|
116+
| Knowledge Distillation(ResNet50) + int8 quantization |+1.10%| -71.76%|
117+
| Pruning(FLOPs-50%) + int8 quantization|-1.71%|-86.47%|
118118

119119

120120
### Object Detection
@@ -123,24 +123,24 @@ Dataset: ImageNet2012; Model: MobileNetV1;
123123

124124
| Method | mAP(baseline: 76.2%) | Model Size(baseline: 94MB) |
125125
| :---------------------: | :------------: | :------------:|
126-
| Knowledge Distillation(ResNet34-YOLOv3) | [+2.8%]() | - |
127-
| Pruning(FLOPs -52.88%) | [+1.4%]() | [-67.76%]() |
128-
|Knowledge DistillationResNet34-YOLOv3)+Pruning(FLOPs-69.57%)| [+2.6%]()|[-67.00%]()|
126+
| Knowledge Distillation(ResNet34-YOLOv3) | +2.8% | - |
127+
| Pruning(FLOPs -52.88%) | +1.4% | -67.76% |
128+
|Knowledge DistillationResNet34-YOLOv3)+Pruning(FLOPs-69.57%)| +2.6%|-67.00%|
129129

130130

131131
#### Dataset: COCO; Model: MobileNet-V1-YOLOv3
132132

133133
| Method | mAP(baseline: 29.3%) | Model Size|
134134
| :---------------------: | :------------: | :------:|
135-
| Knowledge Distillation(ResNet34-YOLOv3) | [+2.1%]() |-|
136-
| Knowledge Distillation(ResNet34-YOLOv3)+Pruning(FLOPs-67.56%) | [-0.3%]() | [-66.90%]()|
135+
| Knowledge Distillation(ResNet34-YOLOv3) | +2.1% |-|
136+
| Knowledge Distillation(ResNet34-YOLOv3)+Pruning(FLOPs-67.56%) | -0.3% | -66.90%|
137137

138138
### NAS
139139

140140
Dataset: ImageNet2012; Model: MobileNetV2
141141

142142
|Device | Infer time cost | Top1 accuracy(baseline:71.90%) |
143143
|:---------------:|:---------:|:--------------------:|
144-
| RK3288 | [-23%]() | +0.07% |
145-
| Android cellphone | [-20%]() | +0.16% |
146-
| iPhone 6s | [-17%]() | +0.32% |
144+
| RK3288 | -23% | +0.07% |
145+
| Android cellphone | -20% | +0.16% |
146+
| iPhone 6s | -17% | +0.32% |

demo/detection/README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -83,7 +83,7 @@
8383

8484
### 蒸馏通道剪裁模型
8585

86-
可通过高精度模型蒸馏通道剪裁后模型的方式,训练方法及相关示例见[蒸馏通道剪裁模型](https://github.com/PaddlePaddle/PaddleDetection/blob/master/slim/extensions/distill_pruned_model/distill_pruned_model_demo.ipynb)
86+
可通过高精度模型蒸馏通道剪裁后模型的方式,训练方法及相关示例见[蒸馏通道剪裁模型](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/static/slim/extensions/distill_pruned_model/distill_pruned_model_demo.ipynb)
8787

8888
COCO数据集上蒸馏通道剪裁模型库如下。
8989

docs/zh_cn/model_zoo.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -199,7 +199,7 @@ PaddleLite版本: v2.3
199199
| BlazeFace-NAS | - | 8 | 640 | 83.7/80.7/65.8 | 244 | 21.117 |[下载链接](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas.tar) |
200200
| BlazeFace-NASV2 | SANAS | 8 | 640 | 87.0/83.7/68.5 | 389 | 22.558 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas2.tar) |
201201

202-
Note: 硬件延时时间是利用提供的硬件延时表得到的,硬件延时表是在855芯片上基于PaddleLite测试的结果。BlazeFace-NASV2的详细配置在[这里](https://github.com/PaddlePaddle/PaddleDetection/blob/master/configs/face_detection/blazeface_nas_v2.yml).
202+
Note: 硬件延时时间是利用提供的硬件延时表得到的,硬件延时表是在855芯片上基于PaddleLite测试的结果。BlazeFace-NASV2的详细配置在[这里](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.1/static/configs/face_detection/blazeface_nas_v2.yml)
203203

204204
## 3. 图像分割
205205

0 commit comments

Comments
 (0)