FaceChain-SuDe: Building Derived Class to Inherit Category Attributes for One-shot Subject-Driven Generation
This is an implementtaion of FaceChain-SuDe based on DreamBooth with Stable Diffusion.
This code repository is based on that of DreamBooth.
First set-up the ldm
enviroment following the instruction from the original Stable Diffusion repo.
Then download the pre-trained stable diffusion models following their instructions. We have evaluated that SuDe works well on both SD-v1.4(sd-v1-4-full-ema.ckpt
) and SD-v1.5(v1-5-pruned.ckpt
).
As the requirment of DreamBooth, some regularization data are needed. Here we generate 50 images before training:
python scripts/stable_txt2img.py --ddim_eta 0.0 --n_samples 10 --n_iter 5 --scale 10.0 --ddim_steps 50 --ckpt stable-diffusion-v-1-4/sd-v1-4-full-ema.ckpt --prompt "photo of a <category>" --seed 7 --outdir reg_data/<category> --unconditional_prompt "monochrome, lowres, bad anatomy, worst quality, low quality"
Compared with original DreamBooth, you only need the additionly provide the category of the subject, and a weight for SuDe loss. A higher weight helps to inherit more public attributes. However, a too-high weight may cause to a loss of fidelity.
python main.py --base configs/stable-diffusion/v1-finetune_unfrozen.yaml -t --actual_resume stable-diffusion-v-1-4/sd-v1-4-full-ema.ckpt -n name --gpus 0, --data_root subject_dir --reg_data_root reg_data_dir --class_word <category> --sude_weight 0.8 --logdir output_checkpoint_dir
python scripts/stable_txt2img.py --ddim_eta 0.0 --n_samples 8 --n_iter 2 --scale 10.0 --ddim_steps 50 --ckpt finetuned_ckpt --prompt "prompt" --seed 7 --outdir output_img_dir --unconditional_prompt "monochrome, lowres, bad anatomy, worst quality, low quality"
Please consider citing this project in your publications if it helps your research.
@inproceedings{qiao2024facechain,
title={FaceChain-SuDe: Building Derived Class to Inherit Category Attributes for One-shot Subject-Driven Generation},
author={Qiao, Pengchong and Shang, Lei and Liu, Chang and Sun, Baigui and Ji, Xiangyang and Chen, Jie},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={7215--7224},
year={2024}
}