forked from rougier/neural-networks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
voronoi.py
65 lines (61 loc) · 2.12 KB
/
voronoi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#!/usr/bin/env python
# -----------------------------------------------------------------------------
# Voronoi diagram from a list of points
# Copyright (C) 2011 Nicolas P. Rougier
#
# Distributed under the terms of the BSD License.
# -----------------------------------------------------------------------------
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
def circumcircle(P1,P2,P3):
'''
Adapted from:
http://local.wasp.uwa.edu.au/~pbourke/geometry/circlefrom3/Circle.cpp
'''
delta_a = P2 - P1
delta_b = P3 - P2
if np.abs(delta_a[0]) <= 0.000000001 and np.abs(delta_b[1]) <= 0.000000001:
center_x = 0.5*(P2[0] + P3[0])
center_y = 0.5*(P1[1] + P2[1])
else:
aSlope = delta_a[1]/delta_a[0]
bSlope = delta_b[1]/delta_b[0]
if np.abs(aSlope-bSlope) <= 0.000000001:
return None
center_x= (aSlope*bSlope*(P1[1] - P3[1]) + bSlope*(P1[0] + P2 [0]) \
- aSlope*(P2[0]+P3[0]) )/(2* (bSlope-aSlope) )
center_y = -1*(center_x - (P1[0]+P2[0])/2)/aSlope + (P1[1]+P2[1])/2;
return center_x, center_y
def voronoi(X,Y):
P = np.zeros((X.size+4,2))
P[:X.size,0], P[:Y.size,1] = X, Y
# We add four points at "infinity"
m = max(np.abs(X).max(), np.abs(Y).max())*1e5
P[X.size:,0] = -m, -m, +m, +m
P[Y.size:,1] = -m, +m, -m, +m
D = matplotlib.tri.Triangulation(P[:,0],P[:,1])
T = D.triangles
n = T.shape[0]
C = np.zeros((n,2))
for i in range(n):
C[i] = circumcircle(P[T[i,0]],P[T[i,1]],P[T[i,2]])
X,Y = C[:,0], C[:,1]
segments = []
for i in range(n):
for j in range(3):
k = D.neighbors[i][j]
if k != -1:
segments.append( [(X[i],Y[i]), (X[k],Y[k])] )
return segments
if __name__ == '__main__':
X = np.random.random(200)
Y = np.random.random(200)
fig = plt.figure(figsize=(10,10))
axes = plt.subplot(1,1,1)
plt.scatter(X,Y)
segments = voronoi(X,Y)
lines = matplotlib.collections.LineCollection(segments, color='0.75')
axes.add_collection(lines)
plt.axis([0,1,0,1])
plt.show()