forked from OSGeo/gdal
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcpl_vax.cpp
424 lines (364 loc) · 15.4 KB
/
cpl_vax.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
/******************************************************************************
*
* Project: CPL
* Purpose: Convert between VAX and IEEE floating point formats
* Author: Frank Warmerdam, [email protected]
*
******************************************************************************
* Copyright (c) 2000, Avenza Systems Inc, http://www.avenza.com/
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
****************************************************************************/
#include "cpl_port.h"
#include "cpl_vax.h"
CPL_CVSID("$Id$")
namespace {
typedef struct dbl {
GUInt32 hi;
GUInt32 lo;
} double64_t;
}
/************************************************************************/
/* CPLVaxToIEEEDouble() */
/************************************************************************/
void CPLVaxToIEEEDouble(void * dbl)
{
double64_t dt;
GUInt32 sign;
int exponent;
GUInt32 rndbits;
/* -------------------------------------------------------------------- */
/* Arrange the VAX double so that it may be accessed by a */
/* double64_t structure, (two GUInt32s). */
/* -------------------------------------------------------------------- */
{
const unsigned char *src = static_cast<const unsigned char *>(dbl);
unsigned char dest[8];
#ifdef CPL_LSB
dest[2] = src[0];
dest[3] = src[1];
dest[0] = src[2];
dest[1] = src[3];
dest[6] = src[4];
dest[7] = src[5];
dest[4] = src[6];
dest[5] = src[7];
#else
dest[1] = src[0];
dest[0] = src[1];
dest[3] = src[2];
dest[2] = src[3];
dest[5] = src[4];
dest[4] = src[5];
dest[7] = src[6];
dest[6] = src[7];
#endif
memcpy(&dt, dest, 8);
}
/* -------------------------------------------------------------------- */
/* Save the sign of the double */
/* -------------------------------------------------------------------- */
sign = dt.hi & 0x80000000;
/* -------------------------------------------------------------------- */
/* Adjust the exponent so that we may work with it */
/* -------------------------------------------------------------------- */
exponent = (dt.hi >> 23) & 0x000000ff;
if (exponent)
exponent = exponent -129 + 1023;
/* -------------------------------------------------------------------- */
/* Save the bits that we are discarding so we can round properly */
/* -------------------------------------------------------------------- */
rndbits = dt.lo & 0x00000007;
dt.lo = dt.lo >> 3;
dt.lo = (dt.lo & 0x1fffffff) | (dt.hi << 29);
if (rndbits)
dt.lo = dt.lo | 0x00000001;
/* -------------------------------------------------------------------- */
/* Shift the hi-order int over 3 and insert the exponent and sign */
/* -------------------------------------------------------------------- */
dt.hi = dt.hi >> 3;
dt.hi = dt.hi & 0x000fffff;
dt.hi = dt.hi | (static_cast<GUInt32>(exponent) << 20) | sign;
#ifdef CPL_LSB
/* -------------------------------------------------------------------- */
/* Change the number to a byte swapped format */
/* -------------------------------------------------------------------- */
const unsigned char* src = reinterpret_cast<const unsigned char *>(&dt);
unsigned char* dest = static_cast<unsigned char *>(dbl);
memcpy(dest + 0, src + 4, 4);
memcpy(dest + 4, src + 0, 4);
#else
memcpy( dbl, &dt, 8 );
#endif
}
/************************************************************************/
/* CPLIEEEToVaxDouble() */
/************************************************************************/
void CPLIEEEToVaxDouble(void * dbl)
{
double64_t dt;
#ifdef CPL_LSB
{
const GByte* src = static_cast<const GByte *>(dbl);
GByte dest[8];
dest[0] = src[4];
dest[1] = src[5];
dest[2] = src[6];
dest[3] = src[7];
dest[4] = src[0];
dest[5] = src[1];
dest[6] = src[2];
dest[7] = src[3];
memcpy( &dt, dest, 8 );
}
#else
memcpy( &dt, dbl, 8 );
#endif
GInt32 sign = dt.hi & 0x80000000;
GInt32 exponent = dt.hi >> 20;
exponent = exponent & 0x000007ff;
/* -------------------------------------------------------------------- */
/* An exponent of zero means a zero value. */
/* -------------------------------------------------------------------- */
if (exponent)
exponent = exponent -1023+129;
/* -------------------------------------------------------------------- */
/* In the case of overflow, return the largest number we can */
/* -------------------------------------------------------------------- */
if (exponent > 255)
{
GByte dest[8];
if (sign)
dest[1] = 0xff;
else
dest[1] = 0x7f;
dest[0] = 0xff;
dest[2] = 0xff;
dest[3] = 0xff;
dest[4] = 0xff;
dest[5] = 0xff;
dest[6] = 0xff;
dest[7] = 0xff;
memcpy( dbl, dest, 8 );
return;
}
/* -------------------------------------------------------------------- */
/* In the case of of underflow return zero */
/* -------------------------------------------------------------------- */
else if ((exponent < 0 ) ||
(exponent == 0 && sign == 0))
{
memset( dbl, 0, 8 );
return;
}
else
{
/* -------------------------------------------------------------------- */
/* Shift the fraction 3 bits left and set the exponent and sign*/
/* -------------------------------------------------------------------- */
dt.hi = dt.hi << 3;
dt.hi = dt.hi | (dt.lo >> 29);
dt.hi = dt.hi & 0x007fffff;
dt.hi = dt.hi | (exponent << 23) | sign;
dt.lo = dt.lo << 3;
}
/* -------------------------------------------------------------------- */
/* Convert the double back to VAX format */
/* -------------------------------------------------------------------- */
const GByte* src = reinterpret_cast<GByte *>(&dt);
#ifdef CPL_LSB
GByte* dest = static_cast<GByte *>(dbl);
memcpy(dest + 2, src + 0, 2);
memcpy(dest + 0, src + 2, 2);
memcpy(dest + 6, src + 4, 2);
memcpy(dest + 4, src + 6, 2);
#else
GByte dest[8];
dest[1] = src[0];
dest[0] = src[1];
dest[3] = src[2];
dest[2] = src[3];
dest[5] = src[4];
dest[4] = src[5];
dest[7] = src[6];
dest[6] = src[7];
memcpy( dbl, dest, 8 );
#endif
}
//////////////////////////////////////////////////////////////////////////
/// Below code is adapted from Public Domain VICAR project
/// https://github.com/nasa/VICAR/blob/master/vos/rtl/source/conv_vax_ieee_r.c
//////////////////////////////////////////////////////////////////////////
static void real_byte_swap(const unsigned char from[4], unsigned char to[4])
{
to[0] = from[1];
to[1] = from[0];
to[2] = from[3];
to[3] = from[2];
}
/* Shift x[1]..x[3] right one bit by bytes, don't bother with x[0] */
#define SHIFT_RIGHT(x) \
{ x[3] = ((x[3]>>1) & 0x7F) | ((x[2]<<7) & 0x80); \
x[2] = ((x[2]>>1) & 0x7F) | ((x[1]<<7) & 0x80); \
x[1] = (x[1]>>1) & 0x7F; \
}
/* Shift x[1]..x[3] left one bit by bytes, don't bother with x[0] */
#define SHIFT_LEFT(x) \
{ x[1] = ((x[1]<<1) & 0xFE) | ((x[2]>>7) & 0x01); \
x[2] = ((x[2]<<1) & 0xFE) | ((x[3]>>7) & 0x01); \
x[3] = (x[3]<<1) & 0xFE; \
}
/************************************************************************/
/* Convert between IEEE and Vax single-precision floating point. */
/* Both formats are represented as: */
/* (-1)^s * f * 2^(e-bias) */
/* where s is the sign bit, f is the mantissa (see below), e is the */
/* exponent, and bias is the exponent bias (see below). */
/* There is an assumed leading 1 on the mantissa (except for IEEE */
/* denormalized numbers), but the placement of the binary point varies. */
/* */
/* IEEE format: seeeeeee efffffff 8*f 8*f */
/* where e is exponent with bias of 127 and f is of the */
/* form 1.fffff... */
/* Special cases: */
/* e=255, f!=0: NaN (Not a Number) */
/* e=255, f=0: Infinity (+/- depending on s) */
/* e=0, f!=0: Denormalized numbers, of the form */
/* (-1)^s * (0.ffff) * 2^(-126) */
/* e=0, f=0: Zero (can be +/-) */
/* */
/* VAX format: seeeeeee efffffff 8*f 8*f */
/* where e is exponent with bias of 128 and f is of the */
/* form .1fffff... */
/* Byte swapping: Note that the above format is the logical format, */
/* which can be represented as bytes SE1 E2F1 F2 F3. */
/* The actual order in memory is E2F1 SE1 F3 F2 (which is */
/* two half-word swaps, NOT a full-word swap). */
/* Special cases: */
/* e=0, s=0: Zero (no +/-) */
/* e=0, s=1: Invalid, causes Reserved Operand error */
/* */
/* The same code works on all byte-order machines because only byte */
/* operations are performed. It could perhaps be done more efficiently */
/* on a longword basis, but then the code would be byte-order dependent.*/
/* MAKE SURE any mods will work on either byte order!!! */
/************************************************************************/
/************************************************************************/
/* This routine will convert VAX F floating point values to IEEE */
/* single precision floating point. */
/************************************************************************/
static void vax_ieee_r(const unsigned char *from, unsigned char *ieee)
{
unsigned char vaxf[4];
unsigned char exp;
real_byte_swap(from, vaxf); /* Put bytes in rational order */
memcpy(ieee, vaxf, 4); /* Since most bits are the same */
exp = ((vaxf[0]<<1)&0xFE) | ((vaxf[1]>>7)&0x01);
if (exp == 0) { /* Zero or invalid pattern */
if (vaxf[0]&0x80) { /* Sign bit set, which is illegal for VAX */
ieee[0] = 0x7F; /* IEEE NaN */
ieee[1] = 0xFF;
ieee[2] = 0xFF;
ieee[3] = 0xFF;
}
else { /* Zero */
ieee[0] = ieee[1] = ieee[2] = ieee[3] = 0;
}
}
else if (exp >= 3) { /* Normal case */
exp -= 2;
ieee[0] = (vaxf[0]&0x80) | ((exp>>1)&0x7F); /* remake sign + exponent */
} /* Low bit of exp can't change, so don't bother w/it */
else if (exp == 2) { /* Denormalize the number */
SHIFT_RIGHT(ieee); /* Which means shift right 1, */
ieee[1] = (ieee[1] & 0x3F) | 0x40; /* Add suppressed most signif bit, */
ieee[0] = vaxf[0] & 0x80; /* and set exponent to 0 (preserving sign) */
}
else { /* Exp==1, denormalize again */
SHIFT_RIGHT(ieee); /* Like above but shift by 2 */
SHIFT_RIGHT(ieee);
ieee[1] = (ieee[1] & 0x1F) | 0x20;
ieee[0] = vaxf[0] & 0x80;
}
#ifdef CPL_LSB
CPL_SWAP32PTR(ieee);
#endif
}
/************************************************************************/
/* This routine will convert IEEE single precision floating point */
/* values to VAX F floating point. */
/************************************************************************/
static void ieee_vax_r(unsigned char *ieee, unsigned char *to)
{
unsigned char vaxf[4];
unsigned char exp;
#ifdef CPL_LSB
CPL_SWAP32PTR(ieee);
#endif
memcpy(vaxf, ieee, 4); /* Since most bits are the same */
exp = ((ieee[0]<<1)&0xFE) | ((ieee[1]>>7)&0x01);
/* Exponent 255 means NaN or Infinity, exponent 254 is too large for */
/* VAX notation. In either case, set to sign * highest possible number */
if (exp == 255 || exp == 254) { /* Infinity or NaN or too big */
vaxf[0] = 0x7F | (ieee[0]&0x80);
vaxf[1] = 0xFF;
vaxf[2] = 0xFF;
vaxf[3] = 0xFF;
}
else if (exp != 0) { /* Normal case */
exp += 2;
vaxf[0] = (ieee[0]&0x80) | ((exp>>1)&0x7F); /* remake sign + exponent */
} /* Low bit of exp can't change, so don't bother w/it */
else { /* exp == 0, zero or denormalized number */
if (ieee[1] == 0 &&
ieee[2] == 0 &&
ieee[3] == 0) { /* +/- 0 */
vaxf[0] = vaxf[1] = vaxf[2] = vaxf[3] = 0;
}
else { /* denormalized number */
if (ieee[1] & 0x40) { /* hi bit set (0.1ffff) */
SHIFT_LEFT(vaxf); /* Renormalize */
vaxf[1] = vaxf[1] & 0x7F; /* Set vax exponent to 2 */
vaxf[0] = (ieee[0]&0x80) | 0x01; /* sign, exponent==2 */
}
else if (ieee[1] & 0x20) { /* next bit set (0.01ffff) */
SHIFT_LEFT(vaxf); /* Renormalize */
SHIFT_LEFT(vaxf);
vaxf[1] = vaxf[1] | 0x80; /* Set vax exponent to 1 */
vaxf[0] = ieee[0]&0x80; /* sign, exponent==1 */
}
else { /* Number too small for VAX */
vaxf[0] = vaxf[1] = vaxf[2] = vaxf[3] = 0; /* so set to 0 */
}
}
}
real_byte_swap(vaxf, to); /* Put bytes in weird VAX order */
}
void CPLVaxToIEEEFloat( void * f )
{
unsigned char res[4];
vax_ieee_r( static_cast<const unsigned char*>(f), res );
memcpy(f, res, 4);
}
void CPLIEEEToVaxFloat( void * f )
{
unsigned char res[4];
ieee_vax_r( static_cast<unsigned char*>(f), res );
memcpy(f, res, 4);
}