forked from boostcampaitech2/image-classification-level1-03
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
109 lines (84 loc) · 3.43 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import argparse
import os
from importlib import import_module
import pandas as pd
import torch
from dataset import TestDataset, TrainDataset
def load_model(saved_model, num_classes, mode, device):
model_cls = getattr(import_module("model"), args.model)
model = model_cls(
num_classes=num_classes,
mode=mode
)
model_path = os.path.join(saved_model, 'best.pth')
model.load_state_dict(torch.load(model_path, map_location=device))
return model
def encode_age(pred):
for i, p in enumerate(pred):
if p < 30:
pred[i] = 0
elif p < 60:
pred[i] = 1
else:
pred[i] = 2
ret = torch.tensor(pred)
return ret
@torch.no_grad()
def inference(data_dir, model_dir, output_dir, args):
"""
"""
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
num_classes = TrainDataset.num_classes # 18
mode = args.mode
model = load_model(model_dir, num_classes, mode, device).to(device)
model.eval()
img_root = os.path.join(data_dir, 'images')
info_path = os.path.join(data_dir, 'info.csv')
info = pd.read_csv(info_path)
img_paths = [os.path.join(img_root, img_id) for img_id in info.ImageID]
dataset = TestDataset(img_paths, args.resize)
loader = torch.utils.data.DataLoader(
dataset,
batch_size=args.batch_size,
num_workers=4,
shuffle=False,
pin_memory=use_cuda,
)
print("Calculating inference results..")
pred1, pred2, pred3 = [], [], []
with torch.no_grad():
for idx, images in enumerate(loader):
images = images.to(device)
out1, out2, out3 = model(images)
out1 = out1.argmax(dim=-1)
out2 = out2.argmax(dim=-1)
if args.mode == 'reg':
out3 = out3.squeeze()
out3 = encode_age(out3.tolist())
else:
out3 = out3.argmax(dim=-1)
pred1.extend(out1.cpu().numpy())
pred2.extend(out2.cpu().numpy())
pred3.extend(out3.cpu().numpy())
answer = [6 * p1 + 3 * p2 + p3 for p1, p2, p3 in zip(pred1, pred2, pred3)]
info['ans'] = answer
info.to_csv(os.path.join(output_dir, f'output.csv'), index=False)
print(f'Inference Done!')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# Data and model checkpoints directories
parser.add_argument('--batch_size', type=int, default=64, help='input batch size for validing (default: 64)')
parser.add_argument('--resize', type=tuple, default=(300, 300), help='resize size for image when you trained (default: (300, 300))')
parser.add_argument('--model', type=str, default='EnsembleModel', help='model type (default: EnsembleModel)')
parser.add_argument('--mode', type=str, default='default', help='mode type (default: default)')
# Container environment
parser.add_argument('--data_dir', type=str, default=os.environ.get('SM_CHANNEL_EVAL', '/opt/ml/input/data/eval'))
parser.add_argument('--model_dir', type=str, default=os.environ.get('SM_CHANNEL_MODEL', './model/exp'))
parser.add_argument('--output_dir', type=str, default=os.environ.get('SM_OUTPUT_DATA_DIR', './output'))
args = parser.parse_args()
data_dir = args.data_dir
model_dir = args.model_dir
output_dir = args.output_dir
os.makedirs(output_dir, exist_ok=True)
inference(data_dir, model_dir, output_dir, args)