forked from boostcampaitech2/image-classification-level1-03
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
73 lines (62 loc) · 2.14 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import torch
import torch.nn as nn
import torch.nn.functional as F
from efficientnet import efficientnet_b3
class BaseModel(nn.Module):
def __init__(self, num_classes):
super().__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=7, stride=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=1)
self.dropout1 = nn.Dropout(0.25)
self.dropout2 = nn.Dropout(0.25)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(128, num_classes)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.relu(x)
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = self.conv3(x)
x = F.relu(x)
x = F.max_pool2d(x, 2)
x = self.dropout2(x)
x = self.avgpool(x)
x = x.view(-1, 128)
return self.fc(x)
class EnsembleModel(nn.Module):
def __init__(self, num_classes, mode):
super(EnsembleModel, self).__init__()
self.feature = efficientnet_b3(pretrained=True, progress=True, num_classes=num_classes).features
self.classifier1 = nn.Sequential(
nn.Dropout(0.2),
nn.Linear(1536, 3)) # mask classifier
self.classifier2 = nn.Sequential(
nn.Dropout(0.2),
nn.Linear(1536, 2)) # gender classifier
# age classifier
if mode == 'reg':
self.classifier3 = nn.Sequential(
nn.Dropout(0.2),
nn.Linear(1536, 512, bias=True),
nn.ReLU(),
nn.Linear(512, 256, bias=True),
nn.ReLU(),
nn.Linear(256, 128, bias=True),
nn.ReLU(),
nn.Linear(128, 1, bias=True)
)
else:
self.classifier3 = nn.Sequential(
nn.Dropout(0.2),
nn.Linear(1536,3)
)
def forward(self, x):
x = self.feature(x)
x = x.mean([2, 3])
x1 = self.classifier1(x)
x2 = self.classifier2(x)
x3 = self.classifier3(x)
return (x1, x2, x3)