forked from zeusees/License-Plate-Detector
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect.py
214 lines (176 loc) · 8.3 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
from __future__ import print_function
import argparse
import torch
import torch.backends.cudnn as cudnn
import numpy as np
from data import cfg_mnet
from layers.functions.prior_box import PriorBox
from utils.nms.py_cpu_nms import py_cpu_nms
import cv2
from models.retina import Retina
from utils.box_utils import decode, decode_landm
import time
import torchvision
import os
print(torch.__version__, torchvision.__version__)
parser = argparse.ArgumentParser(description='RetinaPL')
parser.add_argument('--confidence_threshold', default=0.02, type=float, help='confidence_threshold')
parser.add_argument('--top_k', default=1000, type=int, help='top_k')
parser.add_argument('--nms_threshold', default=0.4, type=float, help='nms_threshold')
parser.add_argument('--keep_top_k', default=500, type=int, help='keep_top_k')
parser.add_argument('-s', '--save_image', action="store_true", default=True, help='show detection results')
parser.add_argument('--vis_thres', default=0.6, type=float, help='visualization_threshold')
args = parser.parse_args()
def check_keys(model, pretrained_state_dict):
ckpt_keys = set(pretrained_state_dict.keys())
model_keys = set(model.state_dict().keys())
used_pretrained_keys = model_keys & ckpt_keys
unused_pretrained_keys = ckpt_keys - model_keys
missing_keys = model_keys - ckpt_keys
print('Missing keys:{}'.format(len(missing_keys)))
print('Unused checkpoint keys:{}'.format(len(unused_pretrained_keys)))
print('Used keys:{}'.format(len(used_pretrained_keys)))
assert len(used_pretrained_keys) > 0, 'load NONE from pretrained checkpoint'
return True
def remove_prefix(state_dict, prefix):
''' Old style model is stored with all names of parameters sharing common prefix 'module.' '''
print('remove prefix \'{}\''.format(prefix))
f = lambda x: x.split(prefix, 1)[-1] if x.startswith(prefix) else x
return {f(key): value for key, value in state_dict.items()}
def load_model(model, pretrained_path, load_to_cpu):
print('Loading pretrained model from {}'.format(pretrained_path))
if load_to_cpu:
pretrained_dict = torch.load(pretrained_path, map_location=lambda storage, loc: storage)
else:
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
pretrained_dict = torch.load(pretrained_path, map_location=lambda storage, loc: storage.cuda(device))
if "state_dict" in pretrained_dict.keys():
pretrained_dict = remove_prefix(pretrained_dict['state_dict'], 'module.')
else:
pretrained_dict = remove_prefix(pretrained_dict, 'module.')
check_keys(model, pretrained_dict)
model.load_state_dict(pretrained_dict, strict=False)
return model
def show_files(path, all_files):
# 首先遍历当前目录所有文件及文件夹
file_list = os.listdir(path)
# 准备循环判断每个元素是否是文件夹还是文件,是文件的话,把名称传入list,是文件夹的话,递归
for file in file_list:
# 利用os.path.join()方法取得路径全名,并存入cur_path变量,否则每次只能遍历一层目录
cur_path = os.path.join(path, file)
# 判断是否是文件夹
if os.path.isdir(cur_path):
show_files(cur_path, all_files)
else:
if cur_path.find(".jpg") > 0:
all_files.append(cur_path)
return all_files
if __name__ == '__main__':
torch.set_grad_enabled(False)
cfg = cfg_mnet
# net and model
net = Retina(cfg=cfg, phase='test')
net = load_model(net, './weights/mnet_plate.pth', False)
net.eval()
print('Finished loading model!')
cudnn.benchmark = True
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net = net.to(device)
resize = 1
# testing begiN
contents = show_files("./imgs", [])
for img_name in contents:
img_raw = cv2.imread(img_name, cv2.IMREAD_COLOR)
print(img_name)
img = np.float32(img_raw)
im_height, im_width, _ = img.shape
scale = torch.Tensor([img.shape[1], img.shape[0], img.shape[1], img.shape[0]])
img -= (104, 117, 123)
img = img.transpose(2, 0, 1)
img = torch.from_numpy(img).unsqueeze(0)
img = img.to(device)
scale = scale.to(device)
tic = time.time()
loc, conf, landms = net(img) # forward pass
print('net forward time: {:.4f}'.format(time.time() - tic))
priorbox = PriorBox(cfg, image_size=(im_height, im_width))
priors = priorbox.forward()
priors = priors.to(device)
prior_data = priors.data
boxes = decode(loc.data.squeeze(0), prior_data, cfg['variance'])
boxes = boxes * scale / resize
boxes = boxes.cpu().numpy()
scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
landms = decode_landm(landms.data.squeeze(0), prior_data, cfg['variance'])
scale1 = torch.Tensor([img.shape[3], img.shape[2], img.shape[3], img.shape[2],
img.shape[3], img.shape[2],
img.shape[3], img.shape[2]])
scale1 = scale1.to(device)
landms = landms * scale1 / resize
landms = landms.cpu().numpy()
# ignore low scores
inds = np.where(scores > args.confidence_threshold)[0]
boxes = boxes[inds]
landms = landms[inds]
scores = scores[inds]
# keep top-K before NMS
order = scores.argsort()[::-1][:args.top_k]
boxes = boxes[order]
landms = landms[order]
scores = scores[order]
# do NMS
dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
keep = py_cpu_nms(dets, args.nms_threshold)
# keep = nms(dets, args.nms_threshold,force_cpu=args.cpu)
dets = dets[keep, :]
landms = landms[keep]
# keep top-K faster NMS
dets = dets[:args.keep_top_k, :]
landms = landms[:args.keep_top_k, :]
dets = np.concatenate((dets, landms), axis=1)
print('priorBox time: {:.4f}'.format(time.time() - tic))
# show image
if args.save_image:
for b in dets:
if b[4] < args.vis_thres:
continue
text = "{:.4f}".format(b[4])
print(text)
b = list(map(int, b))
cv2.rectangle(img_raw, (b[0], b[1]), (b[2], b[3]), (0, 0, 255), 2)
cx = b[0]
cy = b[1] + 12
# landms
#cv2.circle(img_raw, (b[5], b[6]), 1, (0, 0, 255), 4)
#cv2.circle(img_raw, (b[7], b[8]), 1, (0, 255, 255), 4)
#cv2.circle(img_raw, (b[9], b[10]), 1, (0, 255, 0), 4)
#cv2.circle(img_raw, (b[11], b[12]), 1, (255, 0, 0), 4)
x1, y1, x2, y2 = b[0], b[1], b[2], b[3]
w = int(x2 - x1 + 1.0)
h = int(y2 - y1 + 1.0)
img_box = np.zeros((h, w, 3))
img_box = img_raw[y1:y2 + 1, x1:x2 + 1, :]
# cv2.imshow("img_box",img_box)
# print('+++',b[9],b[10])
new_x1, new_y1 = b[9] - x1, b[10] - y1
new_x2, new_y2 = b[11] - x1, b[12] - y1
new_x3, new_y3 = b[7] - x1, b[8] - y1
new_x4, new_y4 = b[5] - x1, b[6] - y1
print(new_x1, new_y1)
print(new_x2, new_y2)
print(new_x3, new_y3)
print(new_x4, new_y4)
# 定义对应的点
points1 = np.float32([[new_x1, new_y1], [new_x2, new_y2], [new_x3, new_y3], [new_x4, new_y4]])
points2 = np.float32([[0, 0], [94, 0], [0, 24], [94, 24]])
# 计算得到转换矩阵
#M = cv2.getPerspectiveTransform(points1, points2)
# 实现透视变换转换
#processed = cv2.warpPerspective(img_box, M, (94, 24))
img = img_raw[y1:y2,x1:x2]
# 显示原图和处理后的图像
#cv2.imshow("processed", img)
cv2.imwrite( "res.jpg",img_raw)
cv2.imshow('image', img_raw)
if cv2.waitKey(1000000) & 0xFF == ord('q'):
cv2.destroyAllWindows()