forked from Tencent/PocketFlow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mobilenet_at_ilsvrc12_run.py
69 lines (58 loc) · 2.33 KB
/
mobilenet_at_ilsvrc12_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# Tencent is pleased to support the open source community by making PocketFlow available.
#
# Copyright (C) 2018 THL A29 Limited, a Tencent company. All rights reserved.
#
# Licensed under the BSD 3-Clause License (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://opensource.org/licenses/BSD-3-Clause
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Execution script for MobileNet models on the ILSVRC-12 dataset."""
import traceback
import tensorflow as tf
from nets.mobilenet_at_ilsvrc12 import ModelHelper
from learners.learner_utils import create_learner
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('log_dir', './logs', 'logging directory')
tf.app.flags.DEFINE_boolean('enbl_multi_gpu', False, 'enable multi-GPU training')
tf.app.flags.DEFINE_string('learner', 'full-prec', 'learner\'s name')
tf.app.flags.DEFINE_string('exec_mode', 'train', 'execution mode: train / eval')
tf.app.flags.DEFINE_boolean('debug', False, 'debugging information')
def main(unused_argv):
"""Main entry."""
try:
# setup the TF logging routine
if FLAGS.debug:
tf.logging.set_verbosity(tf.logging.DEBUG)
else:
tf.logging.set_verbosity(tf.logging.INFO)
sm_writer = tf.summary.FileWriter(FLAGS.log_dir)
# display FLAGS's values
tf.logging.info('FLAGS:')
for key, value in FLAGS.flag_values_dict().items():
tf.logging.info('{}: {}'.format(key, value))
# build the model helper & learner
model_helper = ModelHelper()
learner = create_learner(sm_writer, model_helper)
# execute the learner
if FLAGS.exec_mode == 'train':
learner.train()
elif FLAGS.exec_mode == 'eval':
learner.download_model()
learner.evaluate()
else:
raise ValueError('unrecognized execution mode: ' + FLAGS.exec_mode)
# exit normally
return 0
except ValueError:
traceback.print_exc()
return 1 # exit with errors
if __name__ == '__main__':
tf.app.run()