source
Folders and files
Name | Name | Last commit date | ||
---|---|---|---|---|
parent directory.. | ||||
POT: Python Optimal Transport ============================= |PyPI version| |Anaconda Cloud| |Build Status| |Documentation Status| |Downloads| |Anaconda downloads| |License| This open source Python library provide several solvers for optimization problems related to Optimal Transport for signal, image processing and machine learning. It provides the following solvers: - OT Network Flow solver for the linear program/ Earth Movers Distance [1]. - Entropic regularization OT solver with Sinkhorn Knopp Algorithm [2], stabilized version [9][10] and greedy Sinkhorn [22] with optional GPU implementation (requires cupy). - Sinkhorn divergence [23] and entropic regularization OT from empirical data. - Smooth optimal transport solvers (dual and semi-dual) for KL and squared L2 regularizations [17]. - Non regularized Wasserstein barycenters [16] with LP solver (only small scale). - Bregman projections for Wasserstein barycenter [3], convolutional barycenter [21] and unmixing [4]. - Optimal transport for domain adaptation with group lasso regularization [5] - Conditional gradient [6] and Generalized conditional gradient for regularized OT [7]. - Linear OT [14] and Joint OT matrix and mapping estimation [8]. - Wasserstein Discriminant Analysis [11] (requires autograd + pymanopt). - Gromov-Wasserstein distances and barycenters ([13] and regularized [12]) - Stochastic Optimization for Large-scale Optimal Transport (semi-dual problem [18] and dual problem [19]) - Non regularized free support Wasserstein barycenters [20]. - Unbalanced OT with KL relaxation distance and barycenter [10, 25]. Some demonstrations (both in Python and Jupyter Notebook format) are available in the examples folder. Using and citing the toolbox ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ If you use this toolbox in your research and find it useful, please cite POT using the following bibtex reference: :: @misc{flamary2017pot, title={POT Python Optimal Transport library}, author={Flamary, R{'e}mi and Courty, Nicolas}, url={https://github.com/rflamary/POT}, year={2017} } Installation ------------ The library has been tested on Linux, MacOSX and Windows. It requires a C++ compiler for using the EMD solver and relies on the following Python modules: - Numpy (>=1.11) - Scipy (>=1.0) - Cython (>=0.23) - Matplotlib (>=1.5) Pip installation ^^^^^^^^^^^^^^^^ Note that due to a limitation of pip, ``cython`` and ``numpy`` need to be installed prior to installing POT. This can be done easily with :: pip install numpy cython You can install the toolbox through PyPI with: :: pip install POT or get the very latest version by downloading it and then running: :: python setup.py install --user # for user install (no root) Anaconda installation with conda-forge ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ If you use the Anaconda python distribution, POT is available in `conda-forge <https://conda-forge.org>`__. To install it and the required dependencies: :: conda install -c conda-forge pot Post installation check ^^^^^^^^^^^^^^^^^^^^^^^ After a correct installation, you should be able to import the module without errors: .. code:: python import ot Note that for easier access the module is name ot instead of pot. Dependencies ~~~~~~~~~~~~ Some sub-modules require additional dependences which are discussed below - **ot.dr** (Wasserstein dimensionality reduction) depends on autograd and pymanopt that can be installed with: :: pip install pymanopt autograd - **ot.gpu** (GPU accelerated OT) depends on cupy that have to be installed following instructions on `this page <https://docs-cupy.chainer.org/en/stable/install.html>`__. obviously you need CUDA installed and a compatible GPU. Examples -------- Short examples ~~~~~~~~~~~~~~ - Import the toolbox .. code:: python import ot - Compute Wasserstein distances .. code:: python # a,b are 1D histograms (sum to 1 and positive) # M is the ground cost matrix Wd=ot.emd2(a,b,M) # exact linear program Wd_reg=ot.sinkhorn2(a,b,M,reg) # entropic regularized OT # if b is a matrix compute all distances to a and return a vector - Compute OT matrix .. code:: python # a,b are 1D histograms (sum to 1 and positive) # M is the ground cost matrix T=ot.emd(a,b,M) # exact linear program T_reg=ot.sinkhorn(a,b,M,reg) # entropic regularized OT - Compute Wasserstein barycenter .. code:: python # A is a n*d matrix containing d 1D histograms # M is the ground cost matrix ba=ot.barycenter(A,M,reg) # reg is regularization parameter Examples and Notebooks ~~~~~~~~~~~~~~~~~~~~~~ The examples folder contain several examples and use case for the library. The full documentation is available on `Readthedocs <http://pot.readthedocs.io/>`__. Here is a list of the Python notebooks available `here <https://github.com/rflamary/POT/blob/master/notebooks/>`__ if you want a quick look: - `1D optimal transport <https://github.com/rflamary/POT/blob/master/notebooks/plot_OT_1D.ipynb>`__ - `OT Ground Loss <https://github.com/rflamary/POT/blob/master/notebooks/plot_OT_L1_vs_L2.ipynb>`__ - `Multiple EMD computation <https://github.com/rflamary/POT/blob/master/notebooks/plot_compute_emd.ipynb>`__ - `2D optimal transport on empirical distributions <https://github.com/rflamary/POT/blob/master/notebooks/plot_OT_2D_samples.ipynb>`__ - `1D Wasserstein barycenter <https://github.com/rflamary/POT/blob/master/notebooks/plot_barycenter_1D.ipynb>`__ - `OT with user provided regularization <https://github.com/rflamary/POT/blob/master/notebooks/plot_optim_OTreg.ipynb>`__ - `Domain adaptation with optimal transport <https://github.com/rflamary/POT/blob/master/notebooks/plot_otda_d2.ipynb>`__ - `Color transfer in images <https://github.com/rflamary/POT/blob/master/notebooks/plot_otda_color_images.ipynb>`__ - `OT mapping estimation for domain adaptation <https://github.com/rflamary/POT/blob/master/notebooks/plot_otda_mapping.ipynb>`__ - `OT mapping estimation for color transfer in images <https://github.com/rflamary/POT/blob/master/notebooks/plot_otda_mapping_colors_images.ipynb>`__ - `Wasserstein Discriminant Analysis <https://github.com/rflamary/POT/blob/master/notebooks/plot_WDA.ipynb>`__ - `Gromov Wasserstein <https://github.com/rflamary/POT/blob/master/notebooks/plot_gromov.ipynb>`__ - `Gromov Wasserstein Barycenter <https://github.com/rflamary/POT/blob/master/notebooks/plot_gromov_barycenter.ipynb>`__ You can also see the notebooks with `Jupyter nbviewer <https://nbviewer.jupyter.org/github/rflamary/POT/tree/master/notebooks/>`__. Acknowledgements ---------------- This toolbox has been created and is maintained by - `Rémi Flamary <http://remi.flamary.com/>`__ - `Nicolas Courty <http://people.irisa.fr/Nicolas.Courty/>`__ The contributors to this library are - `Alexandre Gramfort <http://alexandre.gramfort.net/>`__ - `Laetitia Chapel <http://people.irisa.fr/Laetitia.Chapel/>`__ - `Michael Perrot <http://perso.univ-st-etienne.fr/pem82055/>`__ (Mapping estimation) - `Léo Gautheron <https://github.com/aje>`__ (GPU implementation) - `Nathalie Gayraud <https://www.linkedin.com/in/nathalie-t-h-gayraud/?ppe=1>`__ - `Stanislas Chambon <https://slasnista.github.io/>`__ - `Antoine Rolet <https://arolet.github.io/>`__ - Erwan Vautier (Gromov-Wasserstein) - `Kilian Fatras <https://kilianfatras.github.io/>`__ - `Alain Rakotomamonjy <https://sites.google.com/site/alainrakotomamonjy/home>`__ - `Vayer Titouan <https://tvayer.github.io/>`__ - `Hicham Janati <https://hichamjanati.github.io/>`__ (Unbalanced OT) - `Romain Tavenard <https://rtavenar.github.io/>`__ (1d Wasserstein) This toolbox benefit a lot from open source research and we would like to thank the following persons for providing some code (in various languages): - `Gabriel Peyré <http://gpeyre.github.io/>`__ (Wasserstein Barycenters in Matlab) - `Nicolas Bonneel <http://liris.cnrs.fr/~nbonneel/>`__ ( C++ code for EMD) - `Marco Cuturi <http://marcocuturi.net/>`__ (Sinkhorn Knopp in Matlab/Cuda) Contributions and code of conduct --------------------------------- Every contribution is welcome and should respect the `contribution guidelines <CONTRIBUTING.md>`__. Each member of the project is expected to follow the `code of conduct <CODE_OF_CONDUCT.md>`__. Support ------- You can ask questions and join the development discussion: - On the `POT Slack channel <https://pot-toolbox.slack.com>`__ - On the POT `mailing list <https://mail.python.org/mm3/mailman3/lists/pot.python.org/>`__ You can also post bug reports and feature requests in Github issues. Make sure to read our `guidelines <CONTRIBUTING.md>`__ first. References ---------- [1] Bonneel, N., Van De Panne, M., Paris, S., & Heidrich, W. (2011, December). `Displacement interpolation using Lagrangian mass transport <https://people.csail.mit.edu/sparis/publi/2011/sigasia/Bonneel_11_Displacement_Interpolation.pdf>`__. In ACM Transactions on Graphics (TOG) (Vol. 30, No. 6, p. 158). ACM. [2] Cuturi, M. (2013). `Sinkhorn distances: Lightspeed computation of optimal transport <https://arxiv.org/pdf/1306.0895.pdf>`__. In Advances in Neural Information Processing Systems (pp. 2292-2300). [3] Benamou, J. D., Carlier, G., Cuturi, M., Nenna, L., & Peyré, G. (2015). `Iterative Bregman projections for regularized transportation problems <https://arxiv.org/pdf/1412.5154.pdf>`__. SIAM Journal on Scientific Computing, 37(2), A1111-A1138. [4] S. Nakhostin, N. Courty, R. Flamary, D. Tuia, T. Corpetti, `Supervised planetary unmixing with optimal transport <https://hal.archives-ouvertes.fr/hal-01377236/document>`__, Whorkshop on Hyperspectral Image and Signal Processing : Evolution in Remote Sensing (WHISPERS), 2016. [5] N. Courty; R. Flamary; D. Tuia; A. Rakotomamonjy, `Optimal Transport for Domain Adaptation <https://arxiv.org/pdf/1507.00504.pdf>`__, in IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.PP, no.99, pp.1-1 [6] Ferradans, S., Papadakis, N., Peyré, G., & Aujol, J. F. (2014). `Regularized discrete optimal transport <https://arxiv.org/pdf/1307.5551.pdf>`__. SIAM Journal on Imaging Sciences, 7(3), 1853-1882. [7] Rakotomamonjy, A., Flamary, R., & Courty, N. (2015). `Generalized conditional gradient: analysis of convergence and applications <https://arxiv.org/pdf/1510.06567.pdf>`__. arXiv preprint arXiv:1510.06567. [8] M. Perrot, N. Courty, R. Flamary, A. Habrard (2016), `Mapping estimation for discrete optimal transport <http://remi.flamary.com/biblio/perrot2016mapping.pdf>`__, Neural Information Processing Systems (NIPS). [9] Schmitzer, B. (2016). `Stabilized Sparse Scaling Algorithms for Entropy Regularized Transport Problems <https://arxiv.org/pdf/1610.06519.pdf>`__. arXiv preprint arXiv:1610.06519. [10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016). `Scaling algorithms for unbalanced transport problems <https://arxiv.org/pdf/1607.05816.pdf>`__. arXiv preprint arXiv:1607.05816. [11] Flamary, R., Cuturi, M., Courty, N., & Rakotomamonjy, A. (2016). `Wasserstein Discriminant Analysis <https://arxiv.org/pdf/1608.08063.pdf>`__. arXiv preprint arXiv:1608.08063. [12] Gabriel Peyré, Marco Cuturi, and Justin Solomon (2016), `Gromov-Wasserstein averaging of kernel and distance matrices <http://proceedings.mlr.press/v48/peyre16.html>`__ International Conference on Machine Learning (ICML). [13] Mémoli, Facundo (2011). `Gromov–Wasserstein distances and the metric approach to object matching <https://media.adelaide.edu.au/acvt/Publications/2011/2011-Gromov%E2%80%93Wasserstein%20Distances%20and%20the%20Metric%20Approach%20to%20Object%20Matching.pdf>`__. Foundations of computational mathematics 11.4 : 417-487. [14] Knott, M. and Smith, C. S. (1984).`On the optimal mapping of distributions <https://link.springer.com/article/10.1007/BF00934745>`__, Journal of Optimization Theory and Applications Vol 43. [15] Peyré, G., & Cuturi, M. (2018). `Computational Optimal Transport <https://arxiv.org/pdf/1803.00567.pdf>`__ . [16] Agueh, M., & Carlier, G. (2011). `Barycenters in the Wasserstein space <https://hal.archives-ouvertes.fr/hal-00637399/document>`__. SIAM Journal on Mathematical Analysis, 43(2), 904-924. [17] Blondel, M., Seguy, V., & Rolet, A. (2018). `Smooth and Sparse Optimal Transport <https://arxiv.org/abs/1710.06276>`__. Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics (AISTATS). [18] Genevay, A., Cuturi, M., Peyré, G. & Bach, F. (2016) `Stochastic Optimization for Large-scale Optimal Transport <https://arxiv.org/abs/1605.08527>`__. Advances in Neural Information Processing Systems (2016). [19] Seguy, V., Bhushan Damodaran, B., Flamary, R., Courty, N., Rolet, A.& Blondel, M. `Large-scale Optimal Transport and Mapping Estimation <https://arxiv.org/pdf/1711.02283.pdf>`__. International Conference on Learning Representation (2018) [20] Cuturi, M. and Doucet, A. (2014) `Fast Computation of Wasserstein Barycenters <http://proceedings.mlr.press/v32/cuturi14.html>`__. International Conference in Machine Learning [21] Solomon, J., De Goes, F., Peyré, G., Cuturi, M., Butscher, A., Nguyen, A. & Guibas, L. (2015). `Convolutional wasserstein distances: Efficient optimal transportation on geometric domains <https://dl.acm.org/citation.cfm?id=2766963>`__. ACM Transactions on Graphics (TOG), 34(4), 66. [22] J. Altschuler, J.Weed, P. Rigollet, (2017) `Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration <https://papers.nips.cc/paper/6792-near-linear-time-approximation-algorithms-for-optimal-transport-via-sinkhorn-iteration.pdf>`__, Advances in Neural Information Processing Systems (NIPS) 31 [23] Aude, G., Peyré, G., Cuturi, M., `Learning Generative Models with Sinkhorn Divergences <https://arxiv.org/abs/1706.00292>`__, Proceedings of the Twenty-First International Conference on Artficial Intelligence and Statistics, (AISTATS) 21, 2018 [24] Vayer, T., Chapel, L., Flamary, R., Tavenard, R. and Courty, N. (2019). `Optimal Transport for structured data with application on graphs <http://proceedings.mlr.press/v97/titouan19a.html>`__ Proceedings of the 36th International Conference on Machine Learning (ICML). [25] Frogner C., Zhang C., Mobahi H., Araya-Polo M., Poggio T. (2019). `Learning with a Wasserstein Loss <http://cbcl.mit.edu/wasserstein/>`__ Advances in Neural Information Processing Systems (NIPS). .. |PyPI version| image:: https://badge.fury.io/py/POT.svg :target: https://badge.fury.io/py/POT .. |Anaconda Cloud| image:: https://anaconda.org/conda-forge/pot/badges/version.svg :target: https://anaconda.org/conda-forge/pot .. |Build Status| image:: https://travis-ci.org/rflamary/POT.svg?branch=master :target: https://travis-ci.org/rflamary/POT .. |Documentation Status| image:: https://readthedocs.org/projects/pot/badge/?version=latest :target: http://pot.readthedocs.io/en/latest/?badge=latest .. |Downloads| image:: https://pepy.tech/badge/pot :target: https://pepy.tech/project/pot .. |Anaconda downloads| image:: https://anaconda.org/conda-forge/pot/badges/downloads.svg :target: https://anaconda.org/conda-forge/pot .. |License| image:: https://anaconda.org/conda-forge/pot/badges/license.svg :target: https://github.com/rflamary/POT/blob/master/LICENSE