forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_metal.py
159 lines (143 loc) · 6.59 KB
/
test_metal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import torch
from torch.nn import functional as F
from torch.testing._internal.common_utils import TestCase, run_tests
from torch.testing import FileCheck
import io
class TestMetalRewritePass(TestCase):
@staticmethod
def validate_transformed_module(
# To please flake
self,
pattern_count_map,
data_shape,
prepack_removal=False,
fuse_clamping_ops=False):
module_instance = self
scripted_model = torch.jit.script(module_instance)
scripted_model.eval()
input_data = torch.normal(1, 20, size=data_shape)
ref_result = scripted_model(input_data)
torch._C._jit_pass_metal_insert_prepacked_ops(scripted_model._c)
if fuse_clamping_ops or prepack_removal:
scripted_model._c = torch._C._freeze_module(scripted_model._c)
if fuse_clamping_ops:
torch._C._jit_pass_metal_fuse_clamp_w_prepacked_conv(scripted_model._c)
if prepack_removal:
torch._C._jit_pass_metal_fold_prepacking_ops(scripted_model._c)
buffer = io.BytesIO()
torch.jit.save(scripted_model, buffer)
buffer.seek(0)
deserialized_scripted_model = torch.jit.load(buffer)
for pattern, v in pattern_count_map.items():
if (v == 0):
FileCheck().check(pattern).run(deserialized_scripted_model.graph)
elif (v == -1):
FileCheck().check_not(pattern).run(deserialized_scripted_model.graph)
else:
FileCheck().check_count(pattern, v, exactly=True).run(deserialized_scripted_model.graph)
def test_conv(self):
# Conv params
batch_size = 2
input_channels_per_group = 6
height = 16
width = 16
output_channels_per_group = 6
groups = 4
kernel_h = kernel_w = 3
stride_h = stride_w = 1
pad_h = pad_w = 1
dilation = 1
input_channels = input_channels_per_group * groups
output_channels = output_channels_per_group * groups
kernels = (kernel_h, kernel_w)
strides = (stride_h, stride_w)
paddings = (pad_h, pad_w)
dilations = (dilation, dilation)
conv_weight_shape = (output_channels, input_channels_per_group, kernel_h, kernel_w)
conv_bias_shape = (output_channels)
class Conv2D(torch.nn.Module):
def __init__(self):
super(Conv2D, self).__init__()
self.weight = torch.nn.Parameter(torch.Tensor(torch.rand(conv_weight_shape)), requires_grad=False)
self.bias = torch.nn.Parameter(torch.Tensor(torch.rand(conv_bias_shape)), requires_grad=False)
self.strides = strides
self.paddings = paddings
self.dilations = dilations
self.groups = groups
def forward(self, x):
return F.conv2d(x, self.weight, self.bias,
self.strides, self.paddings, self.dilations, self.groups)
data_shape = (batch_size, input_channels, height, width)
pattern_count_map = {"Tensor = aten::conv2d": -1,
"metal_prepack::conv2d_prepack": 1,
"metal_prepack::conv2d_run": 1}
TestMetalRewritePass.validate_transformed_module(Conv2D(), pattern_count_map, data_shape)
class Conv2DRelu(torch.nn.Module):
def __init__(self):
super(Conv2DRelu, self).__init__()
self.weight = torch.nn.Parameter(torch.Tensor(torch.rand(conv_weight_shape)), requires_grad=False)
self.bias = torch.nn.Parameter(torch.Tensor(torch.rand(conv_bias_shape)), requires_grad=False)
self.strides = strides
self.paddings = paddings
self.dilations = dilations
self.groups = groups
def forward(self, x):
o = F.conv2d(x, self.weight, self.bias,
self.strides, self.paddings, self.dilations, self.groups)
o = F.relu(o)
return o
data_shape = (batch_size, input_channels, height, width)
pattern_count_map = {"Tensor = aten::conv2d": -1,
"metal_prepack::conv2d_prepack": 1,
"metal_prepack::conv2d_run": 1}
TestMetalRewritePass.validate_transformed_module(
Conv2DRelu(), pattern_count_map, data_shape)
pattern_count_map["aten::relu"] = 1
pattern_count_map["metal_prepack::conv2d_prepack"] = -1
TestMetalRewritePass.validate_transformed_module(
Conv2DRelu(),
pattern_count_map,
data_shape,
prepack_removal=True)
pattern_count_map["aten::relu"] = -1
TestMetalRewritePass.validate_transformed_module(
Conv2DRelu(),
pattern_count_map,
data_shape,
prepack_removal=True,
fuse_clamping_ops=True)
class Conv2DHardtanh(torch.nn.Module):
def __init__(self):
super(Conv2DHardtanh, self).__init__()
self.weight = torch.nn.Parameter(torch.Tensor(torch.rand(conv_weight_shape)), requires_grad=False)
self.bias = torch.nn.Parameter(torch.Tensor(torch.rand(conv_bias_shape)), requires_grad=False)
self.strides = strides
self.paddings = paddings
self.dilations = dilations
self.groups = groups
def forward(self, x):
o = F.conv2d(x, self.weight, self.bias,
self.strides, self.paddings, self.dilations, self.groups)
o = F.hardtanh(o)
return o
data_shape = (batch_size, input_channels, height, width)
pattern_count_map = {"Tensor = aten::conv2d": -1,
"metal_prepack::conv2d_prepack": 1,
"metal_prepack::conv2d_run": 1}
TestMetalRewritePass.validate_transformed_module(Conv2DHardtanh(), pattern_count_map, data_shape)
pattern_count_map["aten::hardtanh"] = 1
pattern_count_map["metal_prepack::conv2d_prepack"] = -1
TestMetalRewritePass.validate_transformed_module(
Conv2DHardtanh(),
pattern_count_map,
data_shape,
prepack_removal=True)
pattern_count_map["aten::hardtanh"] = -1
TestMetalRewritePass.validate_transformed_module(
Conv2DRelu(),
pattern_count_map,
data_shape,
prepack_removal=True,
fuse_clamping_ops=True)
if __name__ == "__main__":
run_tests()