-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
70 lines (57 loc) · 2.32 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""MindSpore Vision Video eval script."""
from subprocess import call
from mindspore import context, nn, load_checkpoint, load_param_into_net
from mindspore.train import Model
from mindspore.nn.metrics import Accuracy
from src.utils.check_param import Validator, Rel
from src.utils.config import parse_args, Config
from src.utils.callbacks import EvalLossMonitor
from src.loss.builder import build_loss
from src.data.builder import build_dataset, build_transforms
from src.models import build_model
def eval(pargs):
# set config context
config = Config(pargs.config)
context.set_context(**config.context)
# perpare dataset
transforms = build_transforms(config.data_loader.eval.map.operations)
data_set = build_dataset(config.data_loader.eval.dataset)
data_set.transform = transforms
dataset_eval = data_set.run()
Validator.check_int(dataset_eval.get_dataset_size(), 0, Rel.GT)
# set network
network = build_model(config.model)
# set loss
network_loss = build_loss(config.loss)
# load pretrain model
param_dict = load_checkpoint(config.eval.pretrained_model)
load_param_into_net(network, param_dict)
# Define eval_metrics.
eval_metrics = {'Top_1_Accuracy': nn.Top1CategoricalAccuracy(),
'Top_5_Accuracy': nn.Top5CategoricalAccuracy()}
# init the whole Model
model = Model(network,
network_loss,
metrics={"Accuracy": Accuracy()})
# Begin to eval.
result = model.eval(dataset_eval,
callbacks=[EvalLossMonitor(model)])
return result
if __name__ == '__main__':
args = parse_args()
result = eval(args)
print(result)