Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Training Error in LiDAR stream #14

Open
zccjjj opened this issue Aug 7, 2022 · 6 comments
Open

Training Error in LiDAR stream #14

zccjjj opened this issue Aug 7, 2022 · 6 comments

Comments

@zccjjj
Copy link

zccjjj commented Aug 7, 2022

Hello, thanks for your excellent work, when I tried to train the lidar stream, I got an error and I can not solve it, please help me with some useful advice, thanks very much!

My Environment:

sys.platform: linux
Python: 3.8.3 (default, Jul  2 2020, 16:21:59) [GCC 7.3.0]
CUDA available: True
GPU 0,1,2,3,4,5,6: NVIDIA TITAN RTX
CUDA_HOME: /usr/local/cuda-10.0
NVCC: Cuda compilation tools, release 10.0, V10.0.130
GCC: gcc (Ubuntu 5.4.0-6ubuntu1~16.04.12) 5.4.0 20160609
PyTorch: 1.7.0
PyTorch compiling details: PyTorch built with:
  - GCC 7.3
  - C++ Version: 201402
  - Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v1.6.0 (Git Hash 5ef631a030a6f73131c77892041042805a06064f)
  - OpenMP 201511 (a.k.a. OpenMP 4.5)
  - NNPACK is enabled
  - CPU capability usage: AVX2
  - CUDA Runtime 10.1
  - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_37,code=compute_37
  - CuDNN 7.6.3
  - Magma 2.5.2
  - Build settings: BLAS=MKL, BUILD_TYPE=Release, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DUSE_VULKAN_WRAPPER -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, USE_CUDA=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON,

TorchVision: 0.8.0
OpenCV: 4.6.0
MMCV: 1.3.8
MMCV Compiler: GCC 5.4
MMCV CUDA Compiler: 10.0
MMDetection: 2.11.0
MMDetection3D: 0.11.0+be0cb2e

when I run ./tools/dist_train.sh configs/bevfusion/lidar_stream/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py 1
I got

import DCN failed
2022-08-07 13:26:24,943 - mmdet - INFO - Environment info:
------------------------------------------------------------
sys.platform: linux
Python: 3.8.3 (default, Jul  2 2020, 16:21:59) [GCC 7.3.0]
CUDA available: True
GPU 0,1,2,3,4,5,6: NVIDIA TITAN RTX
CUDA_HOME: /usr/local/cuda-10.0
NVCC: Cuda compilation tools, release 10.0, V10.0.130
GCC: gcc (Ubuntu 5.4.0-6ubuntu1~16.04.12) 5.4.0 20160609
PyTorch: 1.7.0
PyTorch compiling details: PyTorch built with:
  - GCC 7.3
  - C++ Version: 201402
  - Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v1.6.0 (Git Hash 5ef631a030a6f73131c77892041042805a06064f)
  - OpenMP 201511 (a.k.a. OpenMP 4.5)
  - NNPACK is enabled
  - CPU capability usage: AVX2
  - CUDA Runtime 10.1
  - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_37,code=compute_37
  - CuDNN 7.6.3
  - Magma 2.5.2
  - Build settings: BLAS=MKL, BUILD_TYPE=Release, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DUSE_VULKAN_WRAPPER -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, USE_CUDA=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON,

TorchVision: 0.8.0
OpenCV: 4.6.0
MMCV: 1.3.8
MMCV Compiler: GCC 5.4
MMCV CUDA Compiler: 10.0
MMDetection: 2.11.0
MMDetection3D: 0.11.0+be0cb2e
------------------------------------------------------------

2022-08-07 13:26:27,683 - mmdet - INFO - Distributed training: True
2022-08-07 13:26:30,617 - mmdet - INFO - Config:
voxel_size = [0.25, 0.25, 8]
model = dict(
    type='MVXFasterRCNN',
    pts_voxel_layer=dict(
        max_num_points=64,
        point_cloud_range=[-50, -50, -5, 50, 50, 3],
        voxel_size=[0.25, 0.25, 8],
        max_voxels=(30000, 40000)),
    pts_voxel_encoder=dict(
        type='HardVFE',
        in_channels=4,
        feat_channels=[64, 64],
        with_distance=False,
        voxel_size=[0.25, 0.25, 8],
        with_cluster_center=True,
        with_voxel_center=True,
        point_cloud_range=[-50, -50, -5, 50, 50, 3],
        norm_cfg=dict(type='naiveSyncBN1d', eps=0.001, momentum=0.01)),
    pts_middle_encoder=dict(
        type='PointPillarsScatter', in_channels=64, output_shape=[400, 400]),
    pts_backbone=dict(
        type='SECOND',
        in_channels=64,
        norm_cfg=dict(type='naiveSyncBN2d', eps=0.001, momentum=0.01),
        layer_nums=[3, 5, 5],
        layer_strides=[2, 2, 2],
        out_channels=[64, 128, 256]),
    pts_neck=dict(
        type='SECONDFPN',
        norm_cfg=dict(type='naiveSyncBN2d', eps=0.001, momentum=0.01),
        in_channels=[64, 128, 256],
        upsample_strides=[1, 2, 4],
        out_channels=[128, 128, 128]),
    pts_bbox_head=dict(
        type='Anchor3DHead',
        num_classes=10,
        in_channels=384,
        feat_channels=384,
        use_direction_classifier=True,
        anchor_generator=dict(
            type='AlignedAnchor3DRangeGenerator',
            ranges=[[-49.6, -49.6, -1.80032795, 49.6, 49.6, -1.80032795],
                    [-49.6, -49.6, -1.74440365, 49.6, 49.6, -1.74440365],
                    [-49.6, -49.6, -1.68526504, 49.6, 49.6, -1.68526504],
                    [-49.6, -49.6, -1.67339111, 49.6, 49.6, -1.67339111],
                    [-49.6, -49.6, -1.61785072, 49.6, 49.6, -1.61785072],
                    [-49.6, -49.6, -1.80984986, 49.6, 49.6, -1.80984986],
                    [-49.6, -49.6, -1.763965, 49.6, 49.6, -1.763965]],
            sizes=[[1.95017717, 4.60718145, 1.72270761],
                   [2.4560939, 6.73778078, 2.73004906],
                   [2.87427237, 12.01320693, 3.81509561],
                   [0.60058911, 1.68452161, 1.27192197],
                   [0.66344886, 0.7256437, 1.75748069],
                   [0.39694519, 0.40359262, 1.06232151],
                   [2.49008838, 0.48578221, 0.98297065]],
            custom_values=[0, 0],
            rotations=[0, 1.57],
            reshape_out=True),
        assigner_per_size=False,
        diff_rad_by_sin=True,
        dir_offset=0.7854,
        dir_limit_offset=0,
        bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder', code_size=9),
        loss_cls=dict(
            type='FocalLoss',
            use_sigmoid=True,
            gamma=2.0,
            alpha=0.25,
            loss_weight=1.0),
        loss_bbox=dict(
            type='SmoothL1Loss', beta=0.1111111111111111, loss_weight=1.0),
        loss_dir=dict(
            type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2)),
    train_cfg=dict(
        pts=dict(
            assigner=dict(
                type='MaxIoUAssigner',
                iou_calculator=dict(type='BboxOverlapsNearest3D'),
                pos_iou_thr=0.6,
                neg_iou_thr=0.3,
                min_pos_iou=0.3,
                ignore_iof_thr=-1),
            allowed_border=0,
            code_weight=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2],
            pos_weight=-1,
            debug=False)),
    test_cfg=dict(
        pts=dict(
            use_rotate_nms=True,
            nms_across_levels=False,
            nms_pre=1000,
            nms_thr=0.2,
            score_thr=0.05,
            min_bbox_size=0,
            max_num=500)))
point_cloud_range = [-50, -50, -5, 50, 50, 3]
class_names = [
    'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle',
    'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
]
dataset_type = 'NuScenesDataset'
data_root = 'data/nuscenes/'
input_modality = dict(
    use_lidar=True,
    use_camera=False,
    use_radar=False,
    use_map=False,
    use_external=False)
file_client_args = dict(backend='disk')
train_pipeline = [
    dict(
        type='LoadPointsFromFile',
        coord_type='LIDAR',
        load_dim=5,
        use_dim=5,
        file_client_args=dict(backend='disk')),
    dict(
        type='LoadPointsFromMultiSweeps',
        sweeps_num=10,
        file_client_args=dict(backend='disk')),
    dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
    dict(
        type='PointsRangeFilter', point_cloud_range=[-50, -50, -5, 50, 50, 3]),
    dict(
        type='ObjectRangeFilter', point_cloud_range=[-50, -50, -5, 50, 50, 3]),
    dict(
        type='ObjectNameFilter',
        classes=[
            'car', 'truck', 'trailer', 'bus', 'construction_vehicle',
            'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
        ]),
    dict(type='PointShuffle'),
    dict(
        type='DefaultFormatBundle3D',
        class_names=[
            'car', 'truck', 'trailer', 'bus', 'construction_vehicle',
            'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
        ]),
    dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]
test_pipeline = [
    dict(
        type='LoadPointsFromFile',
        coord_type='LIDAR',
        load_dim=5,
        use_dim=5,
        file_client_args=dict(backend='disk')),
    dict(
        type='LoadPointsFromMultiSweeps',
        sweeps_num=10,
        file_client_args=dict(backend='disk')),
    dict(
        type='MultiScaleFlipAug3D',
        img_scale=(1333, 800),
        pts_scale_ratio=1,
        flip=False,
        transforms=[
            dict(
                type='GlobalRotScaleTrans',
                rot_range=[0, 0],
                scale_ratio_range=[1.0, 1.0],
                translation_std=[0, 0, 0]),
            dict(type='RandomFlip3D'),
            dict(
                type='PointsRangeFilter',
                point_cloud_range=[-50, -50, -5, 50, 50, 3]),
            dict(
                type='DefaultFormatBundle3D',
                class_names=[
                    'car', 'truck', 'trailer', 'bus', 'construction_vehicle',
                    'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone',
                    'barrier'
                ],
                with_label=False),
            dict(type='Collect3D', keys=['points'])
        ])
]
data = dict(
    samples_per_gpu=4,
    workers_per_gpu=4,
    train=dict(
        type='NuScenesDataset',
        data_root='data/nuscenes/',
        ann_file='data/nuscenes/nuscenes_infos_train.pkl',
        pipeline=[
            dict(
                type='LoadPointsFromFile',
                coord_type='LIDAR',
                load_dim=5,
                use_dim=5,
                file_client_args=dict(backend='disk')),
            dict(
                type='LoadPointsFromMultiSweeps',
                sweeps_num=10,
                file_client_args=dict(backend='disk')),
            dict(
                type='LoadAnnotations3D',
                with_bbox_3d=True,
                with_label_3d=True),
            dict(
                type='PointsRangeFilter',
                point_cloud_range=[-50, -50, -5, 50, 50, 3]),
            dict(
                type='ObjectRangeFilter',
                point_cloud_range=[-50, -50, -5, 50, 50, 3]),
            dict(
                type='ObjectNameFilter',
                classes=[
                    'car', 'truck', 'trailer', 'bus', 'construction_vehicle',
                    'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone',
                    'barrier'
                ]),
            dict(type='PointShuffle'),
            dict(
                type='DefaultFormatBundle3D',
                class_names=[
                    'car', 'truck', 'trailer', 'bus', 'construction_vehicle',
                    'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone',
                    'barrier'
                ]),
            dict(
                type='Collect3D',
                keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
        ],
        classes=[
            'car', 'truck', 'trailer', 'bus', 'construction_vehicle',
            'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
        ],
        modality=dict(
            use_lidar=True,
            use_camera=False,
            use_radar=False,
            use_map=False,
            use_external=False),
        test_mode=False,
        box_type_3d='LiDAR'),
    val=dict(
        type='NuScenesDataset',
        data_root='data/nuscenes/',
        ann_file='data/nuscenes/nuscenes_infos_val.pkl',
        pipeline=[
            dict(
                type='LoadPointsFromFile',
                coord_type='LIDAR',
                load_dim=5,
                use_dim=5,
                file_client_args=dict(backend='disk')),
            dict(
                type='LoadPointsFromMultiSweeps',
                sweeps_num=10,
                file_client_args=dict(backend='disk')),
            dict(
                type='MultiScaleFlipAug3D',
                img_scale=(1333, 800),
                pts_scale_ratio=1,
                flip=False,
                transforms=[
                    dict(
                        type='GlobalRotScaleTrans',
                        rot_range=[0, 0],
                        scale_ratio_range=[1.0, 1.0],
                        translation_std=[0, 0, 0]),
                    dict(type='RandomFlip3D'),
                    dict(
                        type='PointsRangeFilter',
                        point_cloud_range=[-50, -50, -5, 50, 50, 3]),
                    dict(
                        type='DefaultFormatBundle3D',
                        class_names=[
                            'car', 'truck', 'trailer', 'bus',
                            'construction_vehicle', 'bicycle', 'motorcycle',
                            'pedestrian', 'traffic_cone', 'barrier'
                        ],
                        with_label=False),
                    dict(type='Collect3D', keys=['points'])
                ])
        ],
        classes=[
            'car', 'truck', 'trailer', 'bus', 'construction_vehicle',
            'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
        ],
        modality=dict(
            use_lidar=True,
            use_camera=False,
            use_radar=False,
            use_map=False,
            use_external=False),
        test_mode=True,
        box_type_3d='LiDAR'),
    test=dict(
        type='NuScenesDataset',
        data_root='data/nuscenes/',
        ann_file='data/nuscenes/nuscenes_infos_val.pkl',
        pipeline=[
            dict(
                type='LoadPointsFromFile',
                coord_type='LIDAR',
                load_dim=5,
                use_dim=5,
                file_client_args=dict(backend='disk')),
            dict(
                type='LoadPointsFromMultiSweeps',
                sweeps_num=10,
                file_client_args=dict(backend='disk')),
            dict(
                type='MultiScaleFlipAug3D',
                img_scale=(1333, 800),
                pts_scale_ratio=1,
                flip=False,
                transforms=[
                    dict(
                        type='GlobalRotScaleTrans',
                        rot_range=[0, 0],
                        scale_ratio_range=[1.0, 1.0],
                        translation_std=[0, 0, 0]),
                    dict(type='RandomFlip3D'),
                    dict(
                        type='PointsRangeFilter',
                        point_cloud_range=[-50, -50, -5, 50, 50, 3]),
                    dict(
                        type='DefaultFormatBundle3D',
                        class_names=[
                            'car', 'truck', 'trailer', 'bus',
                            'construction_vehicle', 'bicycle', 'motorcycle',
                            'pedestrian', 'traffic_cone', 'barrier'
                        ],
                        with_label=False),
                    dict(type='Collect3D', keys=['points'])
                ])
        ],
        classes=[
            'car', 'truck', 'trailer', 'bus', 'construction_vehicle',
            'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
        ],
        modality=dict(
            use_lidar=True,
            use_camera=False,
            use_radar=False,
            use_map=False,
            use_external=False),
        test_mode=True,
        box_type_3d='LiDAR'))
evaluation = dict(interval=24)
optimizer = dict(type='AdamW', lr=0.001, weight_decay=0.01)
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
lr_config = dict(
    policy='step',
    warmup='linear',
    warmup_iters=1000,
    warmup_ratio=0.001,
    step=[20, 23])
momentum_config = None
total_epochs = 24
checkpoint_config = dict(interval=1)
log_config = dict(
    interval=50,
    hooks=[dict(type='TextLoggerHook'),
           dict(type='TensorboardLoggerHook')])
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d'
load_from = None
resume_from = None
workflow = [('train', 1)]
gpu_ids = range(0, 1)

2022-08-07 13:26:30,618 - mmdet - INFO - Set random seed to 0, deterministic: False
create hard
create hard
2022-08-07 13:26:30,677 - mmdet - INFO - Model:
MVXFasterRCNN(
  (pts_voxel_layer): Voxelization(voxel_size=[0.25, 0.25, 8], point_cloud_range=[-50, -50, -5, 50, 50, 3], max_num_points=64, max_voxels=(30000, 40000))
  (pts_voxel_encoder): HardVFE(
    (scatter): DynamicScatter(voxel_size=[0.25, 0.25, 8], point_cloud_range=[-50, -50, -5, 50, 50, 3], average_points=True)
    (vfe_layers): ModuleList(
      (0): VFELayer(
        (norm): NaiveSyncBatchNorm1d(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (linear): Linear(in_features=10, out_features=64, bias=False)
      )
      (1): VFELayer(
        (norm): NaiveSyncBatchNorm1d(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (linear): Linear(in_features=128, out_features=64, bias=False)
      )
    )
  )
  (pts_middle_encoder): PointPillarsScatter()
  (pts_backbone): SECOND(
    (blocks): ModuleList(
      (0): Sequential(
        (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
        (1): NaiveSyncBatchNorm2d(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (2): ReLU(inplace=True)
        (3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (4): NaiveSyncBatchNorm2d(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (5): ReLU(inplace=True)
        (6): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (7): NaiveSyncBatchNorm2d(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (8): ReLU(inplace=True)
        (9): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (10): NaiveSyncBatchNorm2d(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (11): ReLU(inplace=True)
      )
      (1): Sequential(
        (0): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
        (1): NaiveSyncBatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (2): ReLU(inplace=True)
        (3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (4): NaiveSyncBatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (5): ReLU(inplace=True)
        (6): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (7): NaiveSyncBatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (8): ReLU(inplace=True)
        (9): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (10): NaiveSyncBatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (11): ReLU(inplace=True)
        (12): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (13): NaiveSyncBatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (14): ReLU(inplace=True)
        (15): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (16): NaiveSyncBatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (17): ReLU(inplace=True)
      )
      (2): Sequential(
        (0): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
        (1): NaiveSyncBatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (2): ReLU(inplace=True)
        (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (4): NaiveSyncBatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (5): ReLU(inplace=True)
        (6): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (7): NaiveSyncBatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (8): ReLU(inplace=True)
        (9): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (10): NaiveSyncBatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (11): ReLU(inplace=True)
        (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (13): NaiveSyncBatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (14): ReLU(inplace=True)
        (15): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (16): NaiveSyncBatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (17): ReLU(inplace=True)
      )
    )
  )
  (pts_neck): SECONDFPN(
    (deblocks): ModuleList(
      (0): Sequential(
        (0): ConvTranspose2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (1): NaiveSyncBatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (2): ReLU(inplace=True)
      )
      (1): Sequential(
        (0): ConvTranspose2d(128, 128, kernel_size=(2, 2), stride=(2, 2), bias=False)
        (1): NaiveSyncBatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (2): ReLU(inplace=True)
      )
      (2): Sequential(
        (0): ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(4, 4), bias=False)
        (1): NaiveSyncBatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (2): ReLU(inplace=True)
      )
    )
  )
  (pts_bbox_head): Anchor3DHead(
    (loss_cls): FocalLoss()
    (loss_bbox): SmoothL1Loss()
    (loss_dir): CrossEntropyLoss()
    (conv_cls): Conv2d(384, 140, kernel_size=(1, 1), stride=(1, 1))
    (conv_reg): Conv2d(384, 126, kernel_size=(1, 1), stride=(1, 1))
    (conv_dir_cls): Conv2d(384, 28, kernel_size=(1, 1), stride=(1, 1))
  )
)
noise setting:
/root/BEVFusion/mmdetection-2.11.0/mmdet/apis/train.py:95: UserWarning: config is now expected to have a `runner` section, please set `runner` in your config.
  warnings.warn(
noise setting:
2022-08-07 13:26:33,548 - mmdet - INFO - Start running, host: root@zhangcaiji, work_dir: /root/BEVFusion/work_dirs/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d
2022-08-07 13:26:33,548 - mmdet - INFO - Hooks will be executed in the following order:
before_run:
(VERY_HIGH   ) StepLrUpdaterHook
(NORMAL      ) CheckpointHook
(NORMAL      ) DistEvalHook
(VERY_LOW    ) TextLoggerHook
(VERY_LOW    ) TensorboardLoggerHook
 --------------------
before_train_epoch:
(VERY_HIGH   ) StepLrUpdaterHook
(NORMAL      ) DistSamplerSeedHook
(NORMAL      ) DistEvalHook
(LOW         ) IterTimerHook
(VERY_LOW    ) TextLoggerHook
(VERY_LOW    ) TensorboardLoggerHook
 --------------------
before_train_iter:
(VERY_HIGH   ) StepLrUpdaterHook
(LOW         ) IterTimerHook
 --------------------
after_train_iter:
(ABOVE_NORMAL) OptimizerHook
(NORMAL      ) CheckpointHook
(NORMAL      ) DistEvalHook
(LOW         ) IterTimerHook
(VERY_LOW    ) TextLoggerHook
(VERY_LOW    ) TensorboardLoggerHook
 --------------------
after_train_epoch:
(NORMAL      ) CheckpointHook
(NORMAL      ) DistEvalHook
(VERY_LOW    ) TextLoggerHook
(VERY_LOW    ) TensorboardLoggerHook
 --------------------
before_val_epoch:
(NORMAL      ) DistSamplerSeedHook
(LOW         ) IterTimerHook
(VERY_LOW    ) TextLoggerHook
(VERY_LOW    ) TensorboardLoggerHook
 --------------------
before_val_iter:
(LOW         ) IterTimerHook
 --------------------
after_val_iter:
(LOW         ) IterTimerHook
 --------------------
after_val_epoch:
(VERY_LOW    ) TextLoggerHook
(VERY_LOW    ) TensorboardLoggerHook
 --------------------
after_run:
(VERY_LOW    ) TensorboardLoggerHook
 --------------------
2022-08-07 13:26:33,548 - mmdet - INFO - workflow: [('train', 1)], max: 24 epochs
Traceback (most recent call last):
  File "./tools/train.py", line 316, in <module>
    main()
  File "./tools/train.py", line 305, in main
    train_detector(
  File "/root/BEVFusion/mmdetection-2.11.0/mmdet/apis/train.py", line 170, in train_detector
    runner.run(data_loaders, cfg.workflow)
  File "/root/anaconda3/envs/BEVFusion_ali/lib/python3.8/site-packages/mmcv/runner/epoch_based_runner.py", line 127, in run
    epoch_runner(data_loaders[i], **kwargs)
  File "/root/anaconda3/envs/BEVFusion_ali/lib/python3.8/site-packages/mmcv/runner/epoch_based_runner.py", line 50, in train
    self.run_iter(data_batch, train_mode=True, **kwargs)
  File "/root/anaconda3/envs/BEVFusion_ali/lib/python3.8/site-packages/mmcv/runner/epoch_based_runner.py", line 29, in run_iter
    outputs = self.model.train_step(data_batch, self.optimizer,
  File "/root/anaconda3/envs/BEVFusion_ali/lib/python3.8/site-packages/mmcv/parallel/distributed.py", line 51, in train_step
    output = self.module.train_step(*inputs[0], **kwargs[0])
  File "/root/BEVFusion/mmdetection-2.11.0/mmdet/models/detectors/base.py", line 247, in train_step
    losses = self(**data)
  File "/root/anaconda3/envs/BEVFusion_ali/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
    result = self.forward(*input, **kwargs)
  File "/root/anaconda3/envs/BEVFusion_ali/lib/python3.8/site-packages/mmcv/runner/fp16_utils.py", line 97, in new_func
    return old_func(*args, **kwargs)
  File "/root/BEVFusion/mmdet3d/models/detectors/base.py", line 58, in forward
    return self.forward_train(**kwargs)
  File "/root/BEVFusion/mmdet3d/models/detectors/mvx_two_stage.py", line 295, in forward_train
    img_feats, pts_feats = self.extract_feat(
  File "/root/BEVFusion/mmdet3d/models/detectors/mvx_two_stage.py", line 230, in extract_feat
    pts_feats = self.extract_pts_feat(points, img_feats, img_metas)
  File "/root/BEVFusion/mmdet3d/models/detectors/mvx_two_stage.py", line 214, in extract_pts_feat
    voxels, num_points, coors = self.voxelize(pts) # torch.Size([13909, 64, 4]) torch.Size([13909]) torch.Size([13909, 4])
  File "/root/anaconda3/envs/BEVFusion_ali/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 26, in decorate_context
    return func(*args, **kwargs)
  File "/root/anaconda3/envs/BEVFusion_ali/lib/python3.8/site-packages/mmcv/runner/fp16_utils.py", line 184, in new_func
    return old_func(*args, **kwargs)
  File "/root/BEVFusion/mmdet3d/models/detectors/mvx_two_stage.py", line 247, in voxelize
    res_voxels, res_coors, res_num_points = self.pts_voxel_layer(res)
  File "/root/anaconda3/envs/BEVFusion_ali/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
    result = self.forward(*input, **kwargs)
  File "/root/BEVFusion/mmdet3d/ops/voxel/voxelize.py", line 112, in forward
    return voxelization(input, self.voxel_size, self.point_cloud_range,
  File "/root/BEVFusion/mmdet3d/ops/voxel/voxelize.py", line 51, in forward
    voxel_num = hard_voxelize(points, voxels, coors,
RuntimeError: CUDA error: invalid device function
Traceback (most recent call last):
  File "/root/anaconda3/envs/BEVFusion_ali/lib/python3.8/runpy.py", line 194, in _run_module_as_main
    return _run_code(code, main_globals, None,
  File "/root/anaconda3/envs/BEVFusion_ali/lib/python3.8/runpy.py", line 87, in _run_code
    exec(code, run_globals)
  File "/root/anaconda3/envs/BEVFusion_ali/lib/python3.8/site-packages/torch/distributed/launch.py", line 260, in <module>
    main()
  File "/root/anaconda3/envs/BEVFusion_ali/lib/python3.8/site-packages/torch/distributed/launch.py", line 255, in main
    raise subprocess.CalledProcessError(returncode=process.returncode,
subprocess.CalledProcessError: Command '['/root/anaconda3/envs/BEVFusion_ali/bin/python', '-u', './tools/train.py', '--local_rank=0', 'configs/bevfusion/lidar_stream/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py', '--launcher', 'pytorch']' died with <Signals.SIGSEGV: 11>.
@zccjjj
Copy link
Author

zccjjj commented Aug 8, 2022

I have solved this problem by reinstalling the environment!

sys.platform: linux
Python: 3.8.3 (default, Jul  2 2020, 16:21:59) [GCC 7.3.0]
CUDA available: True
GPU 0,1,2,3,4,5,6: NVIDIA TITAN RTX
CUDA_HOME: /usr/local/cuda-10.0
NVCC: Cuda compilation tools, release 10.0, V10.0.130
GCC: gcc (Ubuntu 5.4.0-6ubuntu1~16.04.12) 5.4.0 20160609
PyTorch: 1.7.0+cu101
PyTorch compiling details: PyTorch built with:
  - GCC 7.3
  - C++ Version: 201402
  - Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v1.6.0 (Git Hash 5ef631a030a6f73131c77892041042805a06064f)
  - OpenMP 201511 (a.k.a. OpenMP 4.5)
  - NNPACK is enabled
  - CPU capability usage: AVX2
  - CUDA Runtime 10.1
  - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75
  - CuDNN 7.6.3
  - Magma 2.5.2
  - Build settings: BLAS=MKL, BUILD_TYPE=Release, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DUSE_VULKAN_WRAPPER -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, USE_CUDA=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON,

TorchVision: 0.8.1+cu101
OpenCV: 4.6.0
MMCV: 1.4.0
MMCV Compiler: GCC 7.3
MMCV CUDA Compiler: 10.1
MMDetection: 2.11.0
MMDetection3D: 0.11.0+be0cb2e

@bysota
Copy link

bysota commented Sep 22, 2022

@zccjjj ,after installing the enviroment, an error occurs as below when running the command:
./tools/dist_train.sh configs/bevfusion/lidar_stream/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py 1

ImportError: cannot import name 'ball_query_ext' from partially initialized module 'mmdet3d.ops.ball_query' (most likely due to a circular import)

could u help to give some detailed installation steps for this issue? thanks a lot.

The enviroment:
sys.platform: linux
Python: 3.8.3 (default, Jul 2 2020, 16:21:59) [GCC 7.3.0]
CUDA available: True
GPU 0,1,2,3,4,5,6,7: GeForce RTX 2080 Ti
CUDA_HOME: /usr/local/cuda-10.0
NVCC: Cuda compilation tools, release 10.0, V10.0.130
GCC: gcc (Ubuntu 7.4.0-1ubuntu1~18.04.1) 7.4.0
PyTorch: 1.7.0+cu101
PyTorch compiling details: PyTorch built with:

  • GCC 7.3
  • C++ Version: 201402
  • Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications
  • Intel(R) MKL-DNN v1.6.0 (Git Hash 5ef631a030a6f73131c77892041042805a06064f)
  • OpenMP 201511 (a.k.a. OpenMP 4.5)
  • NNPACK is enabled
  • CPU capability usage: AVX2
  • CUDA Runtime 10.1
  • NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75
  • CuDNN 7.6.3
  • Magma 2.5.2
  • Build settings: BLAS=MKL, BUILD_TYPE=Release, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DUSE_VULKAN_WRAPPER -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, USE_CUDA=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON,

TorchVision: 0.8.1+cu101
OpenCV: 4.6.0
MMCV: 1.4.0
MMCV Compiler: GCC 7.3
MMCV CUDA Compiler: 10.1
MMDetection: 2.11.0
MMDetection3D: 0.11.0+be0cb2e

@GYGWG
Copy link

GYGWG commented Oct 3, 2022

@zccjjj ,after installing the enviroment, an error occurs as below when running the command: ./tools/dist_train.sh configs/bevfusion/lidar_stream/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py 1

ImportError: cannot import name 'ball_query_ext' from partially initialized module 'mmdet3d.ops.ball_query' (most likely due to a circular import)

could u help to give some detailed installation steps for this issue? thanks a lot.

The enviroment: sys.platform: linux Python: 3.8.3 (default, Jul 2 2020, 16:21:59) [GCC 7.3.0] CUDA available: True GPU 0,1,2,3,4,5,6,7: GeForce RTX 2080 Ti CUDA_HOME: /usr/local/cuda-10.0 NVCC: Cuda compilation tools, release 10.0, V10.0.130 GCC: gcc (Ubuntu 7.4.0-1ubuntu1~18.04.1) 7.4.0 PyTorch: 1.7.0+cu101 PyTorch compiling details: PyTorch built with:

  • GCC 7.3
  • C++ Version: 201402
  • Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications
  • Intel(R) MKL-DNN v1.6.0 (Git Hash 5ef631a030a6f73131c77892041042805a06064f)
  • OpenMP 201511 (a.k.a. OpenMP 4.5)
  • NNPACK is enabled
  • CPU capability usage: AVX2
  • CUDA Runtime 10.1
  • NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75
  • CuDNN 7.6.3
  • Magma 2.5.2
  • Build settings: BLAS=MKL, BUILD_TYPE=Release, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DUSE_VULKAN_WRAPPER -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, USE_CUDA=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON,

TorchVision: 0.8.1+cu101 OpenCV: 4.6.0 MMCV: 1.4.0 MMCV Compiler: GCC 7.3 MMCV CUDA Compiler: 10.1 MMDetection: 2.11.0 MMDetection3D: 0.11.0+be0cb2e

Hi @bysota, have you fixed it? I got the exactly same problem. Thx

@buaazeus
Copy link

@GYGWG @bysota
Hello,have you fixed this issue?
ball_query_ext import error.
I got this issue as well.
Thank you.

@zjufkq
Copy link

zjufkq commented Oct 26, 2022

I have solved this problem by reinstalling the environment!

sys.platform: linux
Python: 3.8.3 (default, Jul  2 2020, 16:21:59) [GCC 7.3.0]
CUDA available: True
GPU 0,1,2,3,4,5,6: NVIDIA TITAN RTX
CUDA_HOME: /usr/local/cuda-10.0
NVCC: Cuda compilation tools, release 10.0, V10.0.130
GCC: gcc (Ubuntu 5.4.0-6ubuntu1~16.04.12) 5.4.0 20160609
PyTorch: 1.7.0+cu101
PyTorch compiling details: PyTorch built with:
  - GCC 7.3
  - C++ Version: 201402
  - Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v1.6.0 (Git Hash 5ef631a030a6f73131c77892041042805a06064f)
  - OpenMP 201511 (a.k.a. OpenMP 4.5)
  - NNPACK is enabled
  - CPU capability usage: AVX2
  - CUDA Runtime 10.1
  - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75
  - CuDNN 7.6.3
  - Magma 2.5.2
  - Build settings: BLAS=MKL, BUILD_TYPE=Release, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DUSE_VULKAN_WRAPPER -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, USE_CUDA=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON,

TorchVision: 0.8.1+cu101
OpenCV: 4.6.0
MMCV: 1.4.0
MMCV Compiler: GCC 7.3
MMCV CUDA Compiler: 10.1
MMDetection: 2.11.0
MMDetection3D: 0.11.0+be0cb2e

How do you install mmdet3d==0.11.0 on torch==1.7.0? I have been reporting errors. seek help

@eyabesbes
Copy link

I have solved this problem by reinstalling the environment!

sys.platform: linux
Python: 3.8.3 (default, Jul  2 2020, 16:21:59) [GCC 7.3.0]
CUDA available: True
GPU 0,1,2,3,4,5,6: NVIDIA TITAN RTX
CUDA_HOME: /usr/local/cuda-10.0
NVCC: Cuda compilation tools, release 10.0, V10.0.130
GCC: gcc (Ubuntu 5.4.0-6ubuntu1~16.04.12) 5.4.0 20160609
PyTorch: 1.7.0+cu101
PyTorch compiling details: PyTorch built with:
  - GCC 7.3
  - C++ Version: 201402
  - Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v1.6.0 (Git Hash 5ef631a030a6f73131c77892041042805a06064f)
  - OpenMP 201511 (a.k.a. OpenMP 4.5)
  - NNPACK is enabled
  - CPU capability usage: AVX2
  - CUDA Runtime 10.1
  - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75
  - CuDNN 7.6.3
  - Magma 2.5.2
  - Build settings: BLAS=MKL, BUILD_TYPE=Release, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DUSE_VULKAN_WRAPPER -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, USE_CUDA=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON,

TorchVision: 0.8.1+cu101
OpenCV: 4.6.0
MMCV: 1.4.0
MMCV Compiler: GCC 7.3
MMCV CUDA Compiler: 10.1
MMDetection: 2.11.0
MMDetection3D: 0.11.0+be0cb2e

How do you install mmdet3d==0.11.0 on torch==1.7.0? I have been reporting errors. seek help

Hi,
I have been reporting the same errors I couldn't install mmdet3d ==0.11.0 on torch==1.7.0.

did you figure out how to solve this issue ?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

6 participants