forked from salesforce/decaNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
validate.py
83 lines (71 loc) · 4.18 KB
/
validate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import torch
from util import pad
from metrics import compute_metrics
def compute_validation_outputs(model, val_iter, field, optional_names=[]):
loss, predictions, answers = [], [], []
outputs = [[] for _ in range(len(optional_names))]
for batch_idx, batch in enumerate(val_iter):
l, p = model(batch)
loss.append(l)
predictions.append(pad(p, 150, dim=-1, val=field.vocab.stoi['<pad>']))
a = None
if hasattr(batch, 'wikisql_id'):
a = batch.wikisql_id.data.cpu()
elif hasattr(batch, 'squad_id'):
a = batch.squad_id.data.cpu()
elif hasattr(batch, 'woz_id'):
a = batch.woz_id.data.cpu()
else:
a = pad(batch.answer.data.cpu(), 150, dim=-1, val=field.vocab.stoi['<pad>'])
answers.append(a)
for opt_idx, optional_name in enumerate(optional_names):
outputs[opt_idx].append(getattr(batch, optional_name).data.cpu())
loss = torch.cat(loss, 0) if loss[0] is not None else None
predictions = torch.cat(predictions, 0)
answers = torch.cat(answers, 0)
return loss, predictions, answers, [torch.cat([pad(x, 150, dim=-1, val=field.vocab.stoi['<pad>']) for x in output], 0) for output in outputs]
def get_clip(val_iter):
return -val_iter.extra if val_iter.extra > 0 else None
def all_reverse(tensor, world_size, field, clip, dim=0):
if world_size > 1:
tensor = tensor.float() # tensors must be on cpu and float for all_gather
all_tensors = [torch.zeros_like(tensor) for _ in range(world_size)]
torch.distributed.barrier() # all_gather is experimental for gloo, found that these barriers were necessary
torch.distributed.all_gather(all_tensors, tensor)
torch.distributed.barrier()
tensor = torch.cat(all_tensors, 0).long() # tensors must be long for reverse
# for distributed training, dev sets are padded with extra examples so that the
# tensors are all of a predictable size for all_gather. This line removes those extra examples
return field.reverse(tensor)[:clip]
def gather_results(model, val_iter, field, world_size, optional_names=[]):
loss, predictions, answers, outputs = compute_validation_outputs(model, val_iter, field, optional_names=optional_names)
clip = get_clip(val_iter)
if not hasattr(val_iter.dataset.examples[0], 'squad_id') and not hasattr(val_iter.dataset.examples[0], 'wikisql_id') and not hasattr(val_iter.dataset.examples[0], 'woz_id'):
answers = all_reverse(answers, world_size, field, clip)
return loss, all_reverse(predictions, world_size, field, clip), answers, [all_reverse(x, world_size, field, clip) for x in outputs],
def print_results(keys, values, rank=None, num_print=1):
print()
start = rank * num_print if rank is not None else 0
end = start + num_print
values = [val[start:end] for val in values]
for ex_idx in range(len(values[0])):
for key_idx, key in enumerate(keys):
value = values[key_idx][ex_idx]
v = value[0] if isinstance(value, list) else value
print(f'{key}: {repr(v)}')
print()
def validate(task, val_iter, model, logger, field, world_size, rank, num_print=10, args=None):
with torch.no_grad():
model.eval()
required_names = ['greedy', 'answer']
optional_names = ['context', 'question']
loss, predictions, answers, results = gather_results(model, val_iter, field, world_size, optional_names=optional_names)
predictions = [p.replace('UNK', 'OOV') for p in predictions]
names = required_names + optional_names
if hasattr(val_iter.dataset.examples[0], 'wikisql_id') or hasattr(val_iter.dataset.examples[0], 'squad_id') or hasattr(val_iter.dataset.examples[0], 'woz_id'):
answers = [val_iter.dataset.all_answers[sid] for sid in answers.tolist()]
metrics, answers = compute_metrics(predictions, answers, bleu='iwslt' in task or 'multi30k' in task, dialogue='woz' in task,
rouge='cnn' in task, logical_form='sql' in task, corpus_f1='zre' in task, args=args)
results = [predictions, answers] + results
print_results(names, results, rank=rank, num_print=num_print)
return loss, metrics