forked from MasteringOpenCV/code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRichFeatureMatcher.cpp
executable file
·168 lines (142 loc) · 6.16 KB
/
RichFeatureMatcher.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
/*****************************************************************************
* ExploringSfMWithOpenCV
******************************************************************************
* by Roy Shilkrot, 5th Dec 2012
* http://www.morethantechnical.com/
******************************************************************************
* Ch4 of the book "Mastering OpenCV with Practical Computer Vision Projects"
* Copyright Packt Publishing 2012.
* http://www.packtpub.com/cool-projects-with-opencv/book
*****************************************************************************/
#include "RichFeatureMatcher.h"
#include "FindCameraMatrices.h"
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/video/tracking.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include <iostream>
#include <set>
using namespace std;
using namespace cv;
//c'tor
RichFeatureMatcher::RichFeatureMatcher(std::vector<cv::Mat>& imgs_,
std::vector<std::vector<cv::KeyPoint> >& imgpts_) :
imgpts(imgpts_), imgs(imgs_)
{
detector = FeatureDetector::create("PyramidFAST");
extractor = DescriptorExtractor::create("ORB");
std::cout << " -------------------- extract feature points for all images -------------------\n";
detector->detect(imgs, imgpts);
extractor->compute(imgs, imgpts, descriptors);
std::cout << " ------------------------------------- done -----------------------------------\n";
}
void RichFeatureMatcher::MatchFeatures(int idx_i, int idx_j, vector<DMatch>* matches) {
#ifdef __SFM__DEBUG__
const Mat& img_1 = imgs[idx_i];
const Mat& img_2 = imgs[idx_j];
#endif
const vector<KeyPoint>& imgpts1 = imgpts[idx_i];
const vector<KeyPoint>& imgpts2 = imgpts[idx_j];
const Mat& descriptors_1 = descriptors[idx_i];
const Mat& descriptors_2 = descriptors[idx_j];
std::vector< DMatch > good_matches_,very_good_matches_;
std::vector<KeyPoint> keypoints_1, keypoints_2;
stringstream ss; ss << "imgpts1 has " << imgpts1.size() << " points (descriptors " << descriptors_1.rows << ")" << endl;
cout << ss.str();
stringstream ss1; ss1 << "imgpts2 has " << imgpts2.size() << " points (descriptors " << descriptors_2.rows << ")" << endl;
cout << ss1.str();
keypoints_1 = imgpts1;
keypoints_2 = imgpts2;
if(descriptors_1.empty()) {
CV_Error(0,"descriptors_1 is empty");
}
if(descriptors_2.empty()) {
CV_Error(0,"descriptors_2 is empty");
}
//matching descriptor vectors using Brute Force matcher
BFMatcher matcher(NORM_HAMMING,true); //allow cross-check. use Hamming distance for binary descriptor (ORB)
std::vector< DMatch > matches_;
if (matches == NULL) {
matches = &matches_;
}
if (matches->size() == 0) {
matcher.match( descriptors_1, descriptors_2, *matches );
}
assert(matches->size() > 0);
// double max_dist = 0; double min_dist = 1000.0;
// //-- Quick calculation of max and min distances between keypoints
// for(unsigned int i = 0; i < matches->size(); i++ )
// {
// double dist = (*matches)[i].distance;
// if (dist>1000.0) { dist = 1000.0; }
// if( dist < min_dist ) min_dist = dist;
// if( dist > max_dist ) max_dist = dist;
// }
//
//#ifdef __SFM__DEBUG__
// printf("-- Max dist : %f \n", max_dist );
// printf("-- Min dist : %f \n", min_dist );
//#endif
vector<KeyPoint> imgpts1_good,imgpts2_good;
// if (min_dist <= 0) {
// min_dist = 10.0;
// }
// Eliminate any re-matching of training points (multiple queries to one training)
// double cutoff = 4.0*min_dist;
std::set<int> existing_trainIdx;
for(unsigned int i = 0; i < matches->size(); i++ )
{
//"normalize" matching: somtimes imgIdx is the one holding the trainIdx
if ((*matches)[i].trainIdx <= 0) {
(*matches)[i].trainIdx = (*matches)[i].imgIdx;
}
if( existing_trainIdx.find((*matches)[i].trainIdx) == existing_trainIdx.end() &&
(*matches)[i].trainIdx >= 0 && (*matches)[i].trainIdx < (int)(keypoints_2.size()) /*&&
(*matches)[i].distance > 0.0 && (*matches)[i].distance < cutoff*/ )
{
good_matches_.push_back( (*matches)[i]);
imgpts1_good.push_back(keypoints_1[(*matches)[i].queryIdx]);
imgpts2_good.push_back(keypoints_2[(*matches)[i].trainIdx]);
existing_trainIdx.insert((*matches)[i].trainIdx);
}
}
#ifdef __SFM__DEBUG__
cout << "keypoints_1.size() " << keypoints_1.size() << " imgpts1_good.size() " << imgpts1_good.size() << endl;
cout << "keypoints_2.size() " << keypoints_2.size() << " imgpts2_good.size() " << imgpts2_good.size() << endl;
{
//-- Draw only "good" matches
Mat img_matches;
drawMatches( img_1, keypoints_1, img_2, keypoints_2,
good_matches_, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
//-- Show detected matches
stringstream ss; ss << "Feature Matches " << idx_i << "-" << idx_j;
imshow(ss.str() , img_matches );
waitKey(500);
destroyWindow(ss.str());
}
#endif
vector<uchar> status;
vector<KeyPoint> imgpts2_very_good,imgpts1_very_good;
assert(imgpts1_good.size() > 0);
assert(imgpts2_good.size() > 0);
assert(good_matches_.size() > 0);
assert(imgpts1_good.size() == imgpts2_good.size() && imgpts1_good.size() == good_matches_.size());
//Select features that make epipolar sense
GetFundamentalMat(keypoints_1,keypoints_2,imgpts1_very_good,imgpts2_very_good,good_matches_);
//Draw matches
#ifdef __SFM__DEBUG__
{
//-- Draw only "good" matches
Mat img_matches;
drawMatches( img_1, keypoints_1, img_2, keypoints_2,
good_matches_, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
//-- Show detected matches
imshow( "Good Matches", img_matches );
waitKey(100);
destroyWindow("Good Matches");
}
#endif
}