diff --git a/bayes.py b/bayes.py index 9725615..df50b42 100644 --- a/bayes.py +++ b/bayes.py @@ -81,7 +81,6 @@ def create_class_descriptions(self,class_labels): classes[str(item)] += 1 classes['total'] += 1 - prob = {} for label in labels: prob[label] = float(classes[label]) / classes['total'] @@ -152,7 +151,9 @@ def create_vocab(self, tokenized_records, class_labels): vocab_count[class_labels[i]] += 1 vocab_count['total'] += 1 - vocab, vocab_count = self.modify_vocab(vocab, vocab_count) + + #vocab, vocab_count = self.modify_vocab(vocab, vocab_count) + return vocab, vocab_count def word_var(self,word): diff --git a/test_bayes_yelp.py b/test_bayes_yelp.py index d1442cd..754f62c 100644 --- a/test_bayes_yelp.py +++ b/test_bayes_yelp.py @@ -35,7 +35,10 @@ for review in islice(reviews,None,200000): if 'Restaurants' in business_dict[review['business_id']]['categories']: - if review['votes']['useful'] >= 2: + if review['votes']['useful'] >= 4: + data.append(review['text']) + labels.append('2') + elif review['votes']['useful'] < 4 and review['votes']['useful'] >= 1: data.append(review['text']) labels.append('1') elif review['votes']['useful'] == 0: @@ -45,7 +48,10 @@ for review in islice(reviews,200000,None): if 'Restaurants' in business_dict[review['business_id']]['categories']: - if review['votes']['useful'] >= 1: + if review['votes']['useful'] >= 4: + test.append(review['text']) + correct_labels.append('2') + elif review['votes']['useful'] < 4 and review['votes']['useful'] >= 1: test.append(review['text']) correct_labels.append('1') elif review['votes']['useful'] == 0: @@ -81,6 +87,8 @@ matches['not-labeled'][correct_labels[i]] += 1 matches['total'][correct_labels[i]] += 1 -#print matches -print 'TP',matches['labeled']['1'],'FN',matches['not-labeled']['1'], 'class 1 percent correct', (float(matches['labeled']['1']) / matches['total']['1']) -print 'FP',matches['not-labeled']['0'], 'TN',matches['labeled']['0'], 'class 0 percent correct', (float(matches['labeled']['0']) / matches['total']['0'] ) +print matches +print 'class 2 percent correct', (float(matches['labeled']['2']) / matches['total']['2']) +print 'class 1 percent correct', (float(matches['labeled']['1']) / matches['total']['1'] ) +print 'class 0 percent correct', (float(matches['labeled']['0']) / matches['total']['0'] ) + diff --git a/yelp_reviews.ipynb b/yelp_reviews.ipynb index ec45875..3d16553 100644 --- a/yelp_reviews.ipynb +++ b/yelp_reviews.ipynb @@ -100,7 +100,7 @@ "language": "python", "metadata": {}, "outputs": [], - "prompt_number": 8 + "prompt_number": 3 }, { "cell_type": "heading", @@ -121,7 +121,7 @@ "language": "python", "metadata": {}, "outputs": [], - "prompt_number": 61 + "prompt_number": 4 }, { "cell_type": "code", @@ -166,7 +166,7 @@ "" ], "output_type": "pyout", - "prompt_number": 62, + "prompt_number": 5, "text": [ " business_id date review_id stars \\\n", "0 9yKzy9PApeiPPOUJEtnvkg 2011-01-26 fWKvX83p0-ka4JS3dc6E5A 5 \n", @@ -179,7 +179,7 @@ ] } ], - "prompt_number": 62 + "prompt_number": 5 }, { "cell_type": "code", @@ -190,7 +190,7 @@ "language": "python", "metadata": {}, "outputs": [], - "prompt_number": 83 + "prompt_number": 6 }, { "cell_type": "code", @@ -225,7 +225,7 @@ "" ], "output_type": "pyout", - "prompt_number": 84, + "prompt_number": 7, "text": [ " text \\\n", "0 My wife took me here on my birthday for breakf... \n", @@ -235,7 +235,7 @@ ] } ], - "prompt_number": 84 + "prompt_number": 7 }, { "cell_type": "code", @@ -246,7 +246,7 @@ "language": "python", "metadata": {}, "outputs": [], - "prompt_number": 85 + "prompt_number": 8 }, { "cell_type": "code", @@ -257,7 +257,7 @@ "language": "python", "metadata": {}, "outputs": [], - "prompt_number": 221 + "prompt_number": 9 }, { "cell_type": "code", @@ -296,7 +296,7 @@ "" ], "output_type": "pyout", - "prompt_number": 222, + "prompt_number": 10, "text": [ " text \\\n", "0 My wife took me here on my birthday for breakf... \n", @@ -306,7 +306,7 @@ ] } ], - "prompt_number": 222 + "prompt_number": 10 }, { "cell_type": "code", @@ -324,9 +324,9 @@ "outputs": [ { "output_type": "pyout", - "prompt_number": 227, + "prompt_number": 11, "text": [ - "" + "" ] }, { @@ -334,7 +334,7 @@ "png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD9CAYAAAC1DKAUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXlYVVX3x793AO7EZR4UEHACcZ5zoFBES6XM1MRSc8qy\nQdMsNUvtrSB/9qrpa+ZMZqU2QZZjipnzlOaUJo4IpDjCZb7f3x/ncLnkEOKly7A/z8Oj55y991pn\nuGvtvfakIEkIBAKBoNqhtLcCAoFAILAPwgEIBAJBNUU4AIFAIKimCAcgEAgE1RThAAQCgaCaIhyA\nQCAQVFNK5QCGDh0KHx8fNG7c+LZrH330EZRKJa5evWo5Fxsbi3r16iE0NBQbNmywnbYCgUAgsBml\ncgBDhgzBunXrbjt/4cIFbNy4EYGBgZZzx44dw8qVK3Hs2DGsW7cOo0aNgtlstp3GAoFAILAJpXIA\n4eHhcHNzu+382LFjMX369BLnEhISEBMTAwcHBwQFBaFu3brYs2ePbbQVCAQCgc1QlzVjQkIC/P39\n0aRJkxLnL126hIceeshy7O/vj5SUlBJpFApFWcUKBAJBtcaWizeUqRPYZDLhgw8+wLRp00ql1J0M\nPslK+zdlyhS76yD0t78eQv/K91eZdSdtv2pPmVoAp0+fxtmzZ9G0aVMAwMWLF9GyZUvs3r0bfn5+\nuHDhgiXtxYsX4efnZxttBQKBQGAzytQCaNy4MdLT03HmzBmcOXMG/v7+OHDgAHx8fPD444/jq6++\nQl5eHs6cOYNTp06hTZs2ttZbIBAIBA9IqRxATEwM2rdvj5MnTyIgIABLly4tcd06xBMWFoZ+/foh\nLCwMjz32GObNm1flYv4RERH2VuGBEPrbF6G//ajMupcHCpZHYOmfhCoU5RLPEggEgqqMrW1nmUcB\nCQSCyou7uzuuXbtmbzUEd8HNza3E5NryQrQABIJqiPgNVmzu9n5s/d7EWkACgUBQTREOQCAQCKop\nwgEIBAJBNUU4AIFAUG0YMmQI3N3dSyxXczeee+45vP322/+CVvZDOACBQFAt2LZtGzZt2oRLly5h\n165d/5heoVCUyxymmTNnokaNGnBxccGwYcOQl5dncxmlRTgAgUBQLTh37hyCgoKg0WhKneduI24y\nMzORnZ193zqsX78eH374ITZv3oxz584hOTkZU6ZMue9ybIVwAAKB4L5JSkrCO+9Mwdy5c2EymWxe\nvlKpRHJysuXYOhxz5coV9OzZE25ubvDw8MDDDz9sMdSXLl3CU089BW9vb9SuXRtz5swBACxevBgj\nRozAzp074ezsjKlTp2LZsmUIDw+/p9y78fvvv8PPzw8vvPACdu/eXer7io+Px/Dhw9GgQQO4urri\nnXfewbJly0qd39aIiWACgaAE+fn5WLlyJdLS0tC+fXu0b9++xPVFi5Zg9OgpyM5+DhrNz5g3Lx77\n9/8CrVZbbjpZh2M++ugjBAQE4MqVKwCAXbt2QaFQwGw2Izo6Gk8++SRWrlyJCxcuoEuXLggJCcGw\nYcOgVquxaNEibNu2DQAeyPC2a9cOBw4cQHx8PAYMGAAnJycMGTIEAwcOhK+v713zHTt2DE8++aTl\nuEmTJkhPT8e1a9fuuOdKeSNaAAKBwEJBQQE6d47GCy8sxKRJKYiK6otPP11UIs1rr70Jk+knkP9B\ndva3OH/eHV9//XWJNPPnL4SnZyCcnb0wfPjLNo1zOzo6IjU1FWfPnoVKpUKHDh0AAHv37sWVK1cw\nefJkqNVqBAcHY/jw4fjqq68A2HYdfQAICgrClClTcPr0acyfPx8nTpxAgwYNEB0dXWJFZGsyMzPh\n4uJiOTYajQCAW7du2VS30iIcgEAgsPDTTz/ht9+uIitrM/LzZ8Jk2owxY8ZajCdJZGffBBAs51Cg\nsDAYN27csJTx448/Yty495GR8T0yMw/iiy9OYfz4yQ+sW5EO48ePR926ddG1a1fUqVMHH374IQAp\nxn/p0iW4ublZ/mJjY/HXX389sOx/okGDBmjSpAkCAgJw7Nixu4bFDAYDbt68aTkuem7Ozs7lruOd\nEA5AIBBYuHr1KsgQACr5TF3k5eVYavAKhQJRUdFwcnoZwAUAa6FUfoPIyEhLGQkJ62AyjQbQHIA/\nsrPjkJBw+57i90Kn05UwoqmpqZYQkMFgwIwZM3D69GkkJibiv//9LzZv3oxatWohODgY165ds/zd\nvHkTa9asuaMMvV5fQkZaWtp96Zibm4uvv/4a0dHRqF+/Pg4ePIg5c+bg9OnTCAkJuWOehg0b4rff\nfrMcHzp0CD4+PnYJ/wDCAQgEAis6duwIch2ATQBuQK2eiBYt2sPJycmSZuXKJejevQAuLm0RHPwm\nEhK+RIMGDSzXvbzcoFafsir1FFxdXe9Lj2bNmmHFihUoLCzEunXr8Msvv1iurVmzBn/++SdIwmg0\nQqVSQaVSoU2bNnB2dsb06dORnZ2NwsJCHDlyBPv27bujjKZNm+Lo0aM4dOgQcnJyMHXq1BLX7xUy\nOnz4MGrWrIk5c+agd+/euHjxIpYtW4ZHHnnknvc1aNAgLF68GMePH8e1a9fwn//8B0OGDCn9g7E1\ntAN2EisQCGTu9Rtcv349a9SoS0dHPTt2fJRpaWn3VXZ6ejp9fYOp0QygWj2GOp0nt27del9l7Nu3\njw0bNqSzszMHDhzIAQMG8O233yZJzpw5k0FBQdTr9fT39+d7771nyXfp0iXGxMTQ19eXbm5ubNeu\nHX/++WeS5LJlyxgeHl5Czvvvv09PT0/WqlWLn3/+OZVKJU+fPk2SfO655ywy/05aWpol3f3y3//+\nlz4+PjQajRw6dCjz8vJuS3O392Nr2ylWAxUIqiHl/RvMyMjAihUrkJ2djejoaISFhZWbrKrIv7Ua\nqHAAAkE1RPwGKzZiOWiBQCAQlCvCAQgEAkE1pVQOYOjQofDx8UHjxo0t58aPH48GDRqgadOm6N27\nd4lxwLGxsahXrx5CQ0OxYcMG22tdxbh+/Tr27t2LS5cu2VsVgUBQjSiVAxgyZAjWrSs5jrdr166W\nIVT169dHbGwsAGmq88qVK3Hs2DGsW7cOo0aNgtlstr3mVYSkpCQEBNRHly4jUadOI/zf/82yt0oC\ngaCaUCoHEB4efttEhaioKCiVUva2bdvi4sWLAICEhATExMTAwcEBQUFBqFu3Lvbs2WNjtasGhYWF\neOKJp5GZ+QVu3jyAnJzDmDp1On7//Xd7qyYQCKoBNlkMbsmSJYiJiQEgrcZnvdmCv78/UlJSbstj\nPekiIiICERERtlClUpGRkYG8vEIAXeQz/lCr2+KPP/4oEW4TCATVk6SkJCQlJZVb+Q/sAN5//304\nOjpiwIABd01zp00V/j7rrjri4eEBR0cVcnI2QXICF5GfvwshIe/aWzWBQFAB+HvleNq0aTYt/4FG\nAS1btgw//fQTVqxYYTnn5+dXYiW8ixcvws/P70HEVFlUKhUSElbCYBgAo7E5NJommDbtTVH7Fwgq\nIdu3b0e9evXg7OyMxMTEe6Y9e/YslEql/ftHSztl+MyZM2zUqJHleO3atQwLC+Ply5dLpDt69Cib\nNm3K3NxcJicns3bt2jSbzSXS3IfYasG1a9e4Z88epqSk2FsVQTWhKv8GFQpFmZdpeBA6d+7Mjz/+\nuFRpz5w5Q4VCwcLCwjtev9v7sfV7K1UIKCYmBlu3bsWVK1cQEBCAadOmITY2Fnl5eYiKigIgbZAw\nb948hIWFoV+/fggLC4Narca8efPKZV/NqoSrqytat25tbzUEgioD7TDL+fz585VvyQubupNSYiex\nAoFA5kF/g1u2bOE7b7/NOXPmMCsry0ZaFRMYGMgZM2awSZMmdHFx4dNPP82cnBzL9QULFrBu3bp0\nd3fn448/zkuXLpEkw8PDqVAoqNfraTAYuGrVqtvKnjJlCp999lnL8d9r40uXLmXt2rXp7OzM4OBg\nrlixwpJ28eLFbNCgAd3c3NitWzeeO3eOJFm7dm0qlUpqtVo6OzszNzeXgYGB3LRp0x3lVpQWgJgJ\nLBAISpCfn4/PP/8cM2bMwI4dO267vmTRIgzs0QPm997Dz2+8gUdatSrTBun3QqFQYPXq1Vi/fj3O\nnDmDw4cPW7Zw3Lx5MyZNmoTVq1cjNTUVgYGB6N+/PwBYlo0+fPgwbt26hb59+96x7LuRlZWF0aNH\nY926dbh58yZ27tyJZs2aAZCGuMfGxuK7777DlStXEB4ebhn9ePr0adSqVQtr1qzBzZs34ejoWGIb\ny3+Say+EAxAIBBYKCgoQ3bkzFr7wAlImTULfqCgs+vTTEmnefO01/GQy4T8kvs3Ohvv587dtCblw\n/nwEenrCy9kZLw8fXqYtIV999VX4+vrCzc0N0dHRlo1UVqxYgWHDhqFZs2ZwdHREbGwsdu7cifPn\nz5eqXP5DeEipVOL3339HdnY2fHx8LGGd+fPnY+LEiQgJCYFSqcTEiRPx22+/3XX7x/uVaw+EAxAI\nBBZ++uknXP3tN2zOysLM/HxsNpkwdsyYEltC3szOttoQEgguLLxtS8j3x43D9xkZOJiZiVNffIHJ\n48ffty7Wm6trtVpkZWUBgKXWX4Rer4eHh8cd5xvdL3q9HitXrsT8+fNRs2ZN9OzZE3/88QcAacvJ\n0aNHW7ab9PDwAACbyLUXwgEIBAILV69eRQhptSEkkJOXV2JLyOioKLzs5CRvCAl8o1SW2BJyXUIC\nRptM8oaQQFx2NtYlJNhMx5o1a+Ls2bOW46ysLGRkZJR6uLnBYLjnVpBdu3bFhg0bkJaWhtDQUIwY\nMQIAUKtWLSxYsKDElpNZWVklJr5ao9frLU7rTnIqAsIBCAQCCx07dsQ6Ut4QEpioVqN9ixYltoRc\nsnIlCrp3R1sXF7wZHIwvExJKbAnp5uWFU+riAYangPveEvJOFLVCYmJisHTpUhw6dAi5ubmYNGkS\nHnroIdSqVQsA4OPjg9OnT9+1nGbNmuGXX37BhQsXcOPGDcs6ZgDw119/ISEhAVlZWXBwcIBer4dK\nJbnDF154AR988AGOHTsGQNrQffXq1feU89VXX6GgoAD79u3DN998U/H6AWzapVxK7CRWIBDI3Os3\nuH79etatUYN6R0c+2rFjmbaEDPb15QCNhmPUanrqdPe9JWRQUJBlK0eSnDp1KgcOHGg5nj9/PuvU\nqUN3d3dGR0eXmEMzf/581qhRg66urly9evUdy3/ppZfo6urKevXqceHChVQqlSwsLGRqaiofeeQR\nuri40NXVlZ06deLx48ct+ZYvX87GjRvTaDQyICCAw4YNu6vOycnJbNu2LQ0GA3v06MHRo0db7uHM\nmTMWmXfibu/H1rZT7AgmEFRDxJaQFRuxJaRAICg3xG+wYiO2hBQIBAJBuSIcgEAgEFRTbLIfgEAg\nqFy4ublVvBEpAgt/34CrvBB9AAKBQFBJEH0AAoFAILAJwgEIBAJBNUU4AIFAIKimCAcgEAgE1RTh\nAAQCgaCaIhyAQCAQVFNK5QCGDh0KHx8fNG7c2HLu6tWriIqKQv369dG1a1dcv37dci02Nhb16tVD\naGgoNmzYYHutBQKBQPDAlMoBDBkyBOvWrStxLi4uDlFRUTh58iQiIyMRFxcHADh27BhWrlyJY8eO\nYd26dRg1ahTMZrPtNRcIBALBA1EqBxAeHn7bzLTExEQMHjwYADB48GB8//33AKR9M2NiYuDg4ICg\noCDUrVsXe/bssbHaAoFAIHhQyrwURHp6Onx8fABIGzCkp6cDAC5dulRihxx/f/87bpk2depUy/8j\nIiIQERFRVlUEAoGgSpKUlISkpKRyK98mawEpFIp7rityp2vWDkAgEAgEt/P3yvG0adNsWn6ZRwH5\n+PhY9rhMTU2Ft7c3AMDPzw8XLlywpLt48WKp9+oUCAQCwb9HmR3A448/jvj4eABAfHw8evXqZTn/\n1VdfIS8vD2fOnMGpU6fQpk0b22grEAgEAptRqhBQTEwMtm7diitXriAgIADvvvsuJkyYgH79+mHx\n4sUICgrCqlWrAABhYWHo168fwsLCoFarMW/ePLHsrEAgEFRAxHLQAoFAUEkQy0ELBAKBwCYIByAQ\nCATVFOEABAKBoJoiHIBAIBBUU4QDEAgEgmqKcAACgUBQTREOQCAQCKopwgEIBAJBNUU4AIFAIKim\nCAcgEAgE1RThAAQCgaCaIhyAQCAQVFOEAxAIBIJqinAAAoFAUE0RDkAgEAiqKcIBCAQCQTVFOACB\nQCCopggHUMnIy8vDoUOHcOrUKbGrmkAgeCBKtSewoGKQkpKCjh27ISOjEAUF1/Hoo52xevVnUKlU\n9lZNIBBUQh64BRAbG4uGDRuicePGGDBgAHJzc3H16lVERUWhfv366Nq1K65fv24LXas9zz33Mi5c\neAq3bh1DdnYy1q+/iEWLFtlbLYFAUEl5IAdw9uxZLFy4EAcOHMDvv/+OwsJCfPXVV4iLi0NUVBRO\nnjyJyMhIxMXF2Urfas3Ro8dQWPg0AAUALUymJ3DgwFF7qyUQCCopD+QAjEYjHBwcYDKZUFBQAJPJ\nhJo1ayIxMRGDBw8GAAwePBjff/+9TZSt7jRoEAqV6hv5KBc63Ro0a9bArjoJBILKywP1Abi7u2Pc\nuHGoVasWtFotunXrhqioKKSnp8PHxwcA4OPjg/T09NvyTp061fL/iIgIREREPIgq1YJly+aiQ4co\n3LixGgUF19CpUzuMGDHC3moJBIJyIikpCUlJSeVWvoIPMJTk9OnTiI6OxrZt2+Di4oK+ffviqaee\nwiuvvIJr165Z0rm7u+Pq1avFQhUKMYKljOTk5ODo0aPQ6XQIDQ2FQqGwt0oCgeBfwta284FaAPv2\n7UP79u3h4eEBAOjduzd27twJX19fpKWlwdfXF6mpqfD29raJsgJAo9GgZcuW9lZDIBBUAR6oDyA0\nNBS7du1CdnY2SGLTpk0ICwtDdHQ04uPjAQDx8fHo1auXTZQVCAQCge14IAfQtGlTDBo0CK1atUKT\nJk0AAM8//zwmTJiAjRs3on79+ti8eTMmTJhgE2UrCiTxv/99gnr1WiI0tA0++2y5vVUSCASC++aB\n+gDKLLSS9wEsWrQEo0dPh8m0EEA+dLqhWL58Jnr3ftLeqgkEgiqMrW2nWAqiDCxatBIm03QA4QA6\nwmSagsWLV9pbLYFAILgvxFIQZUCv1wJIBRAD4FsAwKlTDUBSjMoRCASVBtECKAPTpr0OtfpNAJkA\nrgNIwYULKixYIJZlEAgElQfhAMpAx44d4e8fBGACAC0AT+TkvISNG3+1r2ICgUBwHwgHUEbq1asN\nhWKP5djRcQ8CA2vYUSOBQCC4P8QooDLyxx9/4KGHOqGg4CEAt+DpeQn792+Du7u7vVUTCARVFFvb\nTuEAHoC//voLGzduhKOjIx577DEYDAZ7qyQQCKowwgEIBAJBNUXMAxAIBAKBTRDzAMqI2WzGnDnz\nsG7dL9DrVTh06BiuX89GeHhzrFq1Amq1eLQCgaBiI0JAZeSll8Zi8eKNyM2NALAUwAgAbQBMR6NG\njvj999121U8gEFQ9RB9ABSAvLw8ajQdILwAqAP4AtshXMwD4IDfXBEdHR7vpKBAIqh6iD6ACMGvW\nLJB1ABwH8A4Ao9VVyeibzWY7aCYQCASlR7QA7pPs7Gx4e/shM3MUgPcAXAbQDMAoSCGg9xEYeAVn\nzx6xp5oCgaAKIloAdubo0aMoLHQB8D2kcI8ngKegUv0XWu0QtGunwrFje+5diEAgEFQAxFCV+0Sa\n7JUHoA+AYACuUCiuY8uWHxEeHm5f5QQCgeA+EC2A+yQkJASPPdYJev1OAK9Aq/VA37690bFjR3ur\nJhAIBPeF6AMoA4WFhYiPj8eRIyfQpEkYBg0aBKVS+FKBQFC+iGGgAoFAUE2pcJ3A169fR58+fdCg\nQQOEhYVh9+7duHr1KqKiolC/fn107doV169ft4WuAoFAILAhD+wARo8eje7du+P48eM4fPgwQkND\nERcXh6ioKJw8eRKRkZGIi4uzha6VmoKCAixZsgRvv/0OEhMT7a2OQCAQPFgI6MaNG2jevDmSk5NL\nnA8NDcXWrVvh4+ODtLQ0RERE4MSJE8VCq1kIyGw2o1u3J7Fjx02YTA9Dr1+FV17ph9jYafZWTSAQ\nVCIqVB/Ab7/9hpEjRyIsLAyHDh1Cy5YtMWvWLPj7++PatWsAAJJwd3e3HAPSTUyZMsVyHBERgYiI\niLLfRQVn27Zt6N59JDIzDwFwAHAZDg5ByMhIg7Ozs73VEwgEFZSkpCQkJSVZjqdNm1ZxHMC+ffvQ\nrl077NixA61bt8aYMWPg7OyMuXPnljD47u7uuHr1arHQatYC+PHHHzFgwMe4eXO9fIbQaHxw+vRv\nqFmzZpnKXL9+PaZPnw+SGDduBHr06GE7hQUCQYWkQnUC+/v7w9/fH61btwYA9OnTBwcOHICvry/S\n0tIAAKmpqfD29n5wTSsBZrMZSUlJ+O6775Cammo536ZNGygUhwEsB3ARavVkBAXVgq+vb5nkbNiw\nAb17P4fNm3tjy5a+6Nt3BH788Ufb3IRAIKg2PJAD8PX1RUBAAE6ePAkA2LRpExo2bIjo6GjEx8cD\nAOLj49GrV68H17SCU1hYiEcf7Y3o6Jfw3HNLUL9+U+zcuRMA4OXlhS1bfkLDhv+D0dgaHTocws8/\nJ5Z57sDMmYtgMn0AYCCAZ5CdPQMzZiyw3c0IBIJqwQMvBTFnzhw888wzyMvLQ506dbB06VIUFhai\nX79+WLx4MYKCgrBq1Spb6Fqh+fLLL7FjxxVkZf0GKc7/DZ55ZiSSkw8DAJo3b44jR3bZRJZCoQBg\n3QwslM8JBAJB6XlgB9C0aVPs3bv3tvObNm160KIrFefOnUNOTkdIxh8AHkFa2vlykTVu3PNIShqA\n7GwCUEGnm4g33lhaLrIEAkHVRaxfYCPatGkDJ6fVAFIAECrVx2jWrE25yIqMjMQPP3yBRx9dj27d\nfsR338Xj0UcfLRdZAoGg6iKWgrAh778/HdOmTYVSqUFQUDB+/jkRfn5+9lZLIBBUESrUPIAyC62i\nDgCQNozJzMyEp6eniMsLBAKbIhxAJePWrVv4+eefQRKRkZEwGo3/nEkgEAjugHAAlYj09HS0avUw\nbtwIAKCEwZCMfft+KfPkL4FAUL2pUBPBBPdm4sRpSEuLxq1bm3Dr1gZcvtwPb7wx5Z8zCgQCwb+A\ncADlSHLyRRQUdLAcFxS0R3LyRTtqJBAIBMUIB1COdO7cDjrdPABZAEzQauehU6eHyk3elStXcPz4\nceTk5JSbDIFAUHUQDqAcmTRpPB5/PAAqlQfUag907+6BKVMmlous2NgZ8Pevg7Ztn4C/fz389ttv\n5SJHIBBUHUQn8L+AyWQCAOh0unIpf/fu3ejcuS9Mpp0A/AB8Dn///+DChT/KRZ5AILAPohO4EqLT\n6crN+APA77//DiASkvEHgGeQknIaubm55SZTIBBUfoQDqALUrVsXCsU2AEV7L6+Dh0dNODk52VMt\ngUBQwREOoAoQERGBYcN6Q6ttABeXjjAYBuPbb1fYWy2BQFDBEX0AlYS9e/fis8++hFqtxsiRQxEa\nGnpbmhMnTiAtLQ2NGjWCp6enHbQUCATliZgJXA3ZunUrunfvA5NpDBSKHOh087F7dxIaNmxob9UE\nAsG/iHAA1ZDw8B749df+kHYAAxSKODzzTDKWLxe7gAkE1QkxCqgaYjJlA/CyHJNeyMzMtp9CgkrJ\nunXr0KpVZzRs2B4zZ86xayXs4MGDCA/vjpCQNnj99beQn59vN12qMw+8I5ig/Bk27GmcODEOJpMz\ngGzodNMwdOj/7K2WoBLx66+/onfvwcjOngfAHZMnjwZpxtixo/91Xc6ePYuHH+6GzMz3ATTEvHlT\ncfXqaCxZMu9f16W6I0JAFZzCwkIolUrMmjUHc+cug4ODGpMnj8azzz5jb9UElYjhw1/G4sVBAF6X\nz2xDvXpjcfLk7du5ljdz587F+PGHkJOzUD5zGU5OdZCTc/Nf16WyUeFCQIWFhWjevDmio6MBAFev\nXkVUVBTq16+Prl274vr16/9QguBOrF27Fu7ufnBwcETjxu3w5JOP4/TpAzhxYo8w/oL7RqNxhEJh\nbWBvwMnJ0S66ODo6QqksqYtabR9dqjsP7ABmz56NsLAwy+5XcXFxiIqKwsmTJxEZGYm4uLgHVrI6\nkZOTg3Hj3kB09NO4du1LkLk4dqwzmjVrj2effR7fffedvVUUVEJeeWUk9Pr5UCimAZgLne55TJs2\nzi669OnTB0bjXqjVowEsgE73OCZNesMuulR7+ABcuHCBkZGR3Lx5M3v27EmSDAkJYVpaGkkyNTWV\nISEht+V7QLFVihs3bnD37t08d+4cCwoK2K5dFyqVIQTaErhC4C8CgQReJPA/6nR1OGvWnH9VxytX\nrnDXrl1MTU39V+X+nczMTO7Zs4enT5+2qx6VlePHj/P551/hM8+M4MaNG+2qS1paGseMGc9+/YZw\nxYov7KpLZcLWtvOB+gD69u2LSZMm4ebNm5gxYwZ++OEHuLm54dq1a0XOBe7u7pbjIhQKBaZMKd4Y\nJSIiAhEREWVVo9KyY8cOPPZYbwB+yMs7hwED+uDzz39AXt5NADUBZADoDcAE4HM512G4u/dARsaF\nf0XHxMQfEBMzBA4OQcjNTcasWdMxcuTwf0W2NUeOHEGnTt2Rl+eB/PxLGDiwP+bPnyX2XRZUaZKS\nkpCUlGQ5njZtmm37T8vqOX744QeOGjWKJLllyxZLC8DV1bVEOjc3t9vyPoDYKoPZbKaHhz+BHwgc\nIRBJwEhAT+AUARLYQ8CRwEj5mAQu0GDwKrPca9eusX//oQwKasJOnaJ56tSpu6bNzMykTudOYLcs\n+xS1Wk+eOXPmH+UkJyezS5deDApqwr59BzMjI6PMOpNkSEhLAgtlPW5Qr2/EhISEBypTIKhs2Np2\nlrkPYMeOHUhMTERwcDBiYmKwefNmDBw4ED4+PkhLSwMApKamwtvb20auqmphMplw/fplAK0BdIFU\n048DEAbAblpvAAAgAElEQVSgrpyqNQB3AMvlv93QagdjwICYMskkiW7deuPbb1U4e3Yptm59GO3a\nRd61oz4lJQVKpSuANvKZunB0bIQ///zznnIyMzPRrl0ktmxpg7NnlyIhQY/IyMdhNpvLpDcAnDlz\nAkBf+ciI3NxuOH78eJnLEwgEsI07SUpKsrQAxo8fz7i4OJJkbGws33zzzdvS20hspcZsNtPLqxaB\nsQR6yzXbcwQ8CPwhH++iQqHj8OEj2bp1JOvWbcHXX3+LeXl5ZZKZnp5OJyc3AgWWFoXR2Jk//vjj\nHdMXtwB2yulPUqv15NmzZ+8pZ9OmTTQaO1i1Wgqp1fry3LlzZdKbJBs0aE2F4lO5vOvU6xsyMTGx\nzOUJBJURW9tOm00EK4rFTpgwAf369cPixYsRFBSEVatW2UpElUKhUCAxcSUiIx+DyVQfAAHUAjAF\nQDMYjSEoLLyAL79ciejonjaR6eTkBLM5D9IWlUYAZpDXoNFo7pher9dj5crP0L9/T6hUAcjLO4eP\nP/4IgYGB95Sj0WhgNl8HUAhABcCEwsLsu8opDV9/vQwREY8hN3cu8vJSMWjQQPTsaZvnIhBUV8RE\nMDvz119/oXXrCKSltURe3kPQ6xdi8OAIDBnyLGrXrg13d3ebyhs+/GV8+eV+mEzPQqNJQoMGadi9\nezMcHBzumufatWs4ffo0AgIC4OPjU+La9u3bMX9+PJRKJV59dQRatmyJgoICdOzYDYcOGZGTEwWd\n7ks8+WQIPv980QPpbjKZcOLECbi7uyMoKOiByhIIKiNiMbgqyM2bN/HRR7Nw9uwlREZ2wMCBz5bb\n6Baz2YxFixZj+/b9qF8/EK+9NrrMu5Vt2bIFPXo8jezstwDkQ6f7EFu2/Ig2bdogJycHM2fOxvHj\nyWjXrjlGjnweSqVYekogeBCEAxBUGDp1egJJSU8BGCSfmYPevffim28+s6daAkGVpcItBSH490hM\nTERoaBvUqtUIkyZNRWFhoV31yc3NA+BsdcYZOTl59lJHIBDcJ2I10ErC9u3bERPzPEymJQB8MXv2\nKwCADz6YajedXn55EA4dGgeTSQMpBDQZo0Z9arm+a9cu7NixAzVq1EDfvn2hVovPraqSn5+PVatW\nIT09HeHh4WjdurW9VRKUAhECqiSMHv06Pv7YHcArAPQADsPf/xlcuHDUrnp99tlyzJy5GEqlEm+8\nMRLR0dHQ6XT49NNFGDt2CgoK+sDBYT/atHHFxo0JUKlUdtW3tBQWFsJkMsHZ2fmfE1dzCgoK8Mgj\n3XHoUC7y85tCpVqN+fOnY9CggfZWrcohQkDVlIKCHAD/A+ADaXLYyjJ33tqSQYMG4sCBLYiMbI9n\nnx0Mo9EdnTtHY/To12AybUFe3mxkZSVh795UrFu3zt7qloplyz6DweAGd3cfNGjQCufOnbO3ShWa\nxMREHD6ciaysLcjL+xjZ2Rvw4oujRSWvEiAcQAXiwoULGD78ZURHD8DixUtL/IB++ikJwFhIY/h/\nAfA/vPTSv1PDSklJwciRr6JnzxgsWLDoth/2F198gXnzfkBBwXkUFt7C9u3OyMvLQfGMZjWAUGRk\nZAAAMjIy8Oqrr6NHj/746KNZJfoyUlNT8cILo9GzZww++eTTf92IHDx4EC+99CZycnajoCALJ08+\nhZ49+/+rOlQ2MjIyYDaHotichCIn55bd+6gEpcCm08pKiZ3EVmjS09Pp4eFPlWoigc+o0zXmlCnv\nkZRm5KpUTgTMltm1Tk59uWDBgnLX68qVK/T2DqRa/YasVzNOnPhOiTRDh44iMNtq5u9vdHDwoFo9\nkcBNApuo03ny1KlTzMrKYnBwQzo6vkDgc+p0D3Pw4JEkyatXr9LXN5hq9VgCy6nTteLYsRPK/R6t\nmT9/PrXaYVb3kk+lUsWCgoJ75svJyeGvv/7K7du3l3mmdmXl2LFj1Ok8CWwlcJNq9Vg+9FCkvdWq\nktjadgoHUEGYO3cuNZpnrQzPn9TrPUhKy0bodK4EDsjXsgkE08PDj+fPny9XvRYsWECdrp+VXuep\n0RhpNpstaf7zn/fp5BRjcVAKxXy2aPEwH3qoC9VqDX18grl+/XqSZEJCAp2dH7FyZjepVmtoMpm4\nbNky6vW9rGSl0cFBy8LCwnK9R2sSExNpMDQnkCvrsJ2urr73zHP58mXWrduEzs7NaTA0ZsOGbXj9\n+vV/SeOKwZo1a+jlFUi1WsOOHR9lenq6vVWqktjadooQkB05ceIE2rbtAm/v2pg7dwFIJ6urWpjN\nUhNaoVAgPn4RHBwiAfQC0AJAODIyeiEwsClUKleEhrZCamrqP8pcuXIV/PxC4eDgAZ3OG337DsLN\nm3ffiq+wsBCk9RIOZ5CbC/j41EF0dH9kZGRgzJhXUbv2SRgMD8PZuTeMxqmIj/8fdu7ciPz8bKSl\nJaNr166W8gANgKKJbo4AFCgsLLyDLCeQJReQ++OPPyzP7NFHn7IsPFhabt26hf79h8LHpw4aN26P\n3bt3Izk5GR07Pgpv79r46KNP0bZtAAyGlnB2joFO9wSWL194zzLHjZuMc+cicOvWfmRmHsKffzbE\nO++8d196VXZ69OiBv/46i/z8bGzbttZmi0Dm5uZi5MjR8PWti5CQVtiwYYNNyhXI2NSdlBI7ia1Q\nXL9+nR4e/lQo5hA4SZXqeSqVeioUswlspE4XzlGjXiuRp0ePpwgMIfAzgRsE/Ah8ROAkgTfo61uH\n+fn5TE5O5kcffcTZs2eX2MRl06ZN1GhqENhM4DCBllQo/OnvH8QJEyZw2bJlt4UvLl68SKPRhwrF\nTAJfE3AmsIDASTo4vMwWLcJpNpuZnZ3N77//nl9++eVtG8ekpaVx9uzZnDFjBg8ePEhv7yCqVO8S\n+JkazZPs0aMvSWkDIVfXGlQo/o/AJjo4RDAi4lFLa+P69ev09AygQvExgZNUq99gaGjL+2ohREX1\nopPTQHnBvS+o13vSyyuASuV0+T1MYWBgGH/88UcuX76cJ0+e/McyW7WKJLDOquWymp0797pnnl9/\n/ZWxsbFcsmQJc3NzS61/dWPw4Beo1fYgcIzAD9TpvHjw4EF7q2U3bG07hQOwExs3bqSLy8NWRsNM\njcaT4eHd2bTpw3zjjUm3GePZs+dQp4sgkCUb8WYl8qtUPvz222+p13vQwWEknZyeo7u7n2UVzuef\nf4XADDn9CQKeBNoR8CEwmlrtw+zQoSvz8/NLyD127Bi7dXtKjt13LrHKp6OjCy9fvnzX+zx37hw9\nPPzp5DSYjo4vUq/3ZEJCAp94YgCbNn2Yo0e/wezsbJKkyWTi3r176e/fkAqFD4Fw6nSNOHLkaJKS\nA3NxCS9xz1ptjX9cnZQks7KyeOXKFapUDnIIjQRMdHLqQ42mVokyDYZ6PHLkSKnf5ahRY6nRDCCQ\nTyCXWu0TnDRpyl3TL1iwiDqdH9Xq16nXR7JNm0427zcwm828fPnybe+ysuHs7E3gguX9qFSv8/33\n37e3WnZDOIAqwo4dO2gwhMhGgwSu0dHRmStXrqTB4EEnJ1d6ePhz9+7dljwFBQXs02cgnZzcqVC4\nEqhhFau+QYVCT8CBgIFAUwJnqVK9xWHDXiJJvv76BCqVr8npnyEQS2kDmj/lcwXU61vxhx9+uKPO\nGzdulOPjRctJX6ZarWVmZuZd73PEiJflju0iAzuPCoULZ82aa0ljNpv5+uuTqFZrqFYbqFC4UFoa\nW7ovrdaLZ86c4c6dO+Vnlmf1zIz3dEBms5mjRr1GtVpDBwc9FQpnufXzBgENASdZXrpcZiY1mn9e\n8tqazMxMdugQRa3WlxqNF7t0eZw5OTl31UerdSFw3OJEDYb2/Prrr0st7584dOgQfXyC6eTkSq3W\nhV9//Y3Nyv638fauTWCX5fvRaGI4e/Zse6tlN4QDqCIUFhayU6ce1OmiCMRRr2/BgQOHy6Mptskf\n/Hd0da1hqSEXkZKSwm+++YZKpQuBcAJxBBpSqXQncJpSB+v7BFoQaEaVyoPNmz/M+Ph4uUY1kkAj\nAisp7ThWaFXD6sX4+Pg76pyfn8+2bTvLTfI46vWN+frrk+55n0888QyBpVYO4GcCbanT+XP79u0k\nyS+//JI6XWMCl2XnMoRAHQLjCdyk0diY+/fvl59ZT2q1XSzP7PnnX72n/IULF1Gna03gKoF8qtUD\nZCfQiNKey/lUKAZSpQqUy3yIAwYMu483KWE2m7lhwwb27NmPXbv24fLln/PPP//kgAHD2KVLb37y\nyQKazWbm5eVRqVRbOTFSpxtc6hFdWVlZHD/+LXbu3IuvvfYmb926VeJ6QUEBvb2DCCyXy99Pnc6T\nycnJ931PFYHPPltOnc6PwHt0dBzCmjXr8urVq/ZWy27Y2naKmcA2giT279+Py5cvo0WLFrctm3wn\n8vPzsXDhQpw8mYzWrZvDw8MDPXq8BbN5vyWNUumHTz6ZgsjISOzbtw/Jycnw8PBAcHAw9Ho93n33\nP7h69SZq1PDEunV+yMubJ+fMgTRj2BnABwB0cHB4EwpFFvLywgFcAlAgX+8AYBKAPQD64PTp35GX\nl4c9e/agoKAALVu2RNOmTZGVlYX169fjs88+g0rliD59nkT//v1vW7mUJPbs2YNr167h5583Y8aM\nVQDWAdABeBbAo3BySkVcXB2MGTMGo0aNwSef+AN4XS7hOIBIAI0AHIebmxkXL56CTqe77ZkNGDAA\nCoUCZrMZu3btQmZmJlq3bg03NzcAwDPPjMAXX7QA8KJc9j5oND2Qk/MWgFflc4fh5vY4Bg3qg2bN\nGmHQoEH3vXLpqVOn0KzZQ8jOfgNkLWi1U0BeRl7eWJjN9aHXx2LcuD6YNm0yOnToir17GyA//x0A\nB6DTDcDBg9tRv379e8owm814+OHHsH+/C3Jy+sHJKQENG57Dnj1bLDOsL126hDp1miEn5y9LPqMx\nGvHxw9CrV687lnv+/HkcOXIEtWrVQqNGje7rvv8NtmzZgjVr1sHDwxUjRz4PDw8Pe6tkN2xuO23q\nTkqJncSWG2azmf37D6FOF0QXly40GLz466+/3nc5X3zxBQEXAn/JtbfTBJyo07WQwxU6At4Egung\n0Io+PsGW/XlnzJhBoIFVSGiDXNYsq9r3N3IaUtrlyyiXaZTLr8XAwFDGxs6go6MngYcIONPBwZ3D\nh49ijRp1qVA0JhBChcKdTZu2Y1ZWVol7KCws5OOP96deX4cuLpFUqVwJPCGHpdwJvE7ARIOhNVev\nXk2S/L//m0GNppdVS+QTSv0SbQgY6eBg4LJln931ueXl5bFTpx40GEJpNEbQ3d2PR48eJUlOmfIu\nnZwGsGjYqVI5k8HBDajR9GXxsNW5bN++232/ryIKCgpYt25DAmOsnvUe+R6Kjk/S2dmbpDRsNDLy\ncWq1LvTzq28ZIvtPnDhxgjpdAIvDhoU0GOrxwIEDljQ5OTl0cnKmtM+0tHuaTleLe/fuvWOZ33zz\nLXU6D7q4dKVWW4MTJ04p83MQlD+2tp3CAdiAhIQEGgxNKXXOkkAC/fzq3zPPTz/9xODgJnRz8+ez\nz47g+vXr6e9fXzYa/pS2ifShNOrmMdmYRxLoaTGUSuV77Nq1N0kyLKwNgXoEgghEyYbdn8BcKyOU\nYOUAGhFYzeJ5BQ0JOHLRokXUar1kB9KBgC8BFzm89DqLOkqBGAJSTF2hcKHBUIN9+vSnq2uArHM9\nAjUpjVQaIh/rCERRqQxmjx59LaN3TCYTmzfvKDu6R+R7PSTLGUWgGzUaFz711EAajTXo6OhFvd6d\njzzSgxcvXuS8efOo1UZaGca5VKs9+NVXK3nz5k2GhbWmwdCWjo4NqVC40N09gL6+dWgwtKGzcw+6\nudW0OIz7xWQysUOHKNmBjrd61gesHMABAq0I6NmlSy+mpaUxPz+fr702gZ6egfTzC+GyZXcOu1lz\n/Phx6vWBVo7STIMhlPv37y+R7rPPPqdW60Vn597U64P40kvj7lhebm4utVpXAvtY1Kej0/lV61E2\nFR3hACogs2bNopPTS1Y//myqVA4lJktZc/DgQep0XpSGDiZTrW5PhcKJwCACIQT6EJhIoLtsOD0I\nqOV/58syzhJ4mSqVno888giVSh2BugQ+pTTSpx4BlVzr/ojAs7IBdiLwf3J5b7O4M3IMgVY0Gj3p\n4BBAwIvAYlnOEwTcKI08KrrHj+VzegLjZCMSQKCv7HhmUurI/Y+cZhWBXwl0ZHBwg9uGbubl5TEx\nMZFqtUGWt0GW8yOBKKpU3lQq6xJ4R3ZcHlQqn2e9es343HPDCXQj8CGB85Q6tQ3UaLy4detW5uTk\ncPTo1+jkVJ/AQQKH6OAQytatH+KMGTPu2Yn8T8TEDKVaHU1gvfw85hJIJFCHjo4uBKbJ720pgXNU\nq8exceOHOGHCO9TpwimNxtpOnS6AH374IadMmcp58+bRZDLdJqugoIAtWoTTyek5Amvp6DiSYWGt\n7ziC6MSJE1y5ciV37dp1V91TUlKo1XpbvVPSaIzmt99+W+bnIShfhAOogGzdupU6XSCBFPmHNIP1\n6jXjrVu3eOnSpRLGzmw2c/LkyVSpihzGJgKulDaHH0ggkMBTci34NQK3KNWotbJD6EBgP6VQ0PME\nXpCv6WWDXfRj/lE2xI7y9RFyWieqVM6ysxlNaSjojwRqy87iOQIvUQrZ7JLTBcnX+lLqvNwmy3uO\nwMvy/3sQ+Fx2HI1KGBXJMRwhkEpAGoqZmZnJlJQUZmdnMyUlhSaTiW3bdqJK1U52KMGUHFkfSq0C\nZ1nfJyi1YkYS+D9qNF50dHQl8KL850NgKKWwlgdffnkMSTIy8kkCX/HvrSGt1os//fTTP75js9nM\n9PR03rx5s8R5g8HT6r3vk++9FoOCwnjkyBG2atWRSmXJ4b5OTm4MDGxEYLfV+f5UqbypUEyiVtuT\njRq1va3znyRv3LjBkSNHs1WrSA4b9hIzMjKYnp7OGzdu3Pd3m5+fT3d3P0qhQRI4Sp3O655zH8xm\nM8+ePcuTJ0/e5sTz8/OZkpJSrvMacnJymJKSUumHt5aVCuUAzp8/z4iICIaFhbFhw4aW4VkZGRns\n0qUL69Wrx6ioKF67dq2k0CrmAEjy/fen09HRQEdHdyoUGqrV7gS0dHR0ZY0adXj06FH+9ddfbNq0\nPdVqI6Wa+JuU4uzfWRmCYbJBdSTwX0phF71skNWyITQQ+MAqzwwWx/Pj5XNDZMPvIhv5omUkImQD\nW5R3qZymPYHJVufHy3KLWg2dCHSW0+optVCK0s6XZbxKKUTlweKx9jfl9I3l8zoqlTr5WblSodDR\nycmLGo2rPBzTTZY5nIBKHu5qoFTDN8j3GUwgjMBMOY/1OkTTKA2PDSJgoFLpxPfe+5B9+w6mQvGh\nVbqPCfQj8BPr1Gl2z3d7+fJlNmvWgU5ObnRw0PHVV8dbWneenkEEdliV25MeHjUtS3Rs3ryZBkNj\nFg+dTadarWXjxh0otYqK8lnH7c00GDpzxYoV99QrIyODrVo9YtHrxRfH3LXVeTd2795NN7ea1On8\nqdEYGR+//J7PISCggfx+HKnXe1tCZ9u2baOrqy+1Wm/q9e5cs2bNfelRGlav/pparQu1Wm+6u/uV\nGCJdXahQDiA1NdUSL7x16xbr16/PY8eOcfz48fzwww9JknFxcXzzzTdLCq2CDoAkjx49Sq3Wg8Ux\n1fdko9eGHh5+7N69Lx0cxlCK4V6hFO5xo1Szf5zAZwSmUwrHnKTUMnCnNFkrncBF2fg1+JvxSKBU\nyz4ml9dbNpa/y9e/oNSyKCTQlVKYqCjvL7IMT9kJPEGppmyU/wIoxfFfpdTi6EmgPqUO2nhKcfpN\nlGreekrzD1zlPM9QmqxW1I/Rk1Irwks22l5y3iI9nCl1gF+lNEtZzd9//12u4Xeh1MeSy6JOZZ2u\nIX18QgissbqfL+Ryp8q6XaROF8wlS5bI4+8bUqqlGwn8RuAPOjh4MDLySSYmJt7xvfbs+TQdHF6V\nn98ZqtU1Wb9+aw4d+iINBh/5HXch8DQBZ7q7+3PHjh0kpbBNeHg3ebjvNOr1DThhwjv8+eefqdN5\nUqGYSLV6BKVwnclyH2r1YE6ePJl9+w5meHhPfvTRLBYWFvLWrVt89dXx7NChO4ODG9PBYais134q\nlb40GAIYHNyYs2fPvaMzOHv2LPv3H8qOHXvwgw+ms6CggLm5uTxz5sw953OQ5MMPP0ap5VVIIINA\nQ3p6+jMrK4tGow+Bn1g0wECv92RaWlqJ/KtWrWanTk+we/d+liHApeXs2bPyEOmiisw3dHf3q3YL\n71UoB/B3nnjiCW7cuJEhISGWl5+amsqQkJCSQquoA1i7di1dXLrIH+ivsiFaRGAFAXc5XHDKyliN\noVSb+lg26HVlY7xBNpTdZOM+mlKNN4tSWKgJJedxlFIMvzmlTsiNBFrK/+9iJYeUHMOvsiMIpBQL\n/5NAW0rOwkBp9M1XlGrQGvnfcZRaIkYWh4lmW+k7jUUdnNKfB6VQ1HJKTuVxSq2ZZgS+pRSnd6EU\nWmr8Nx1bUBqdRAIf0cMjiAcPHqSLSyBLhm+kEU7t2rXjQw+1p6NjGKVY+hFK8wccCVy3MqZj2b17\ndzo6FsXiP6MUQltKqWM9isByarU1+f3335d4pzdu3KCLiz+lpSPyKbXYBsvvpbf8DL6lFKZqL7+r\nR6hQ6C2hlLy8PM6fP59vvjmRS5cuZUJCAn/55Rfu37+fb7/9Dt9//wN26NCVUggwhcBaAs5UKp2p\nULxH4DvqdG04duwEtm3bWR7VlEDJwTan1O/hQ+BdSq3JllSr/SyryRZx5coVenoGUKV6h8D31OnC\nOWLEKySl1WgTExOZlJR016U1jMaa8nMueg8fEnDk/v376excv8S7dHHpwKSkJEve5cs/l8OkXxJ4\nl46Oznzttde4devWEvKOHz/O77777raZ2GvWrKGLS7cSMnS6mpZZ7tWFCusAzpw5w1q1avHmzZt0\ndXW1nDebzSWOSekmpkyZYvnbsmWLrdSwK1ILwJdSLfY5Soa96IP9jjqdPxWKotp3AZXKOgTeskqz\nnVLc/rJscHNYPOqmPYEfKNW8X6Q0wiZATv8MpdpzK/lPKxvfq3L+g7JRNFJySm0oOQGDbED0LBlS\nepZSLTvS6twqudxJf9PXhVKNv54s85O/5SmSM93q/FBKrQFXAsnyuQtyWecp1TC7MTS0EXU6f0rO\n6zkWryD6uny/vpQmwulZ3A/SV772rZw2l0plEyqV3pSccZEOK+RyO7E4XLWK7do9anmf586do49P\nMJXKmgTmEdhLIJTFo3AK5HdwglJfjaP8nuIJdOeIESNKfB+7d++ms7M3jcbHaDA0YNeuvSzLTK9Z\ns4YqVQ1KjqkhpX4ZFxYvg3CBTk7O1OtrsTicVEjJKb9JYIDVvUnP0s3Nr4R8abXVp6zSZVCtduLe\nvXtpNPrQaHyUBkNDdurU844x9pCQVgT+Z3Xvj9HJycCMjAxqNC6UWq0kcIlarRdPnz5tydu4cUdK\nLYQV8jcYRcCdDg41LM9hzpxPqNV602jsSZ3Olx9++F9L/sOHD1Onq0npt0ECR6jRGG8bhlzV2LJl\nSwlbWSEdwK1bt9iiRQt+9913JHmbwXdzcysptIq1AM6ePcu2bSNpMHhSr/eVf7hB/LsDMBpr0cXF\nl1ptW9n4OfJ2B1AUdtFaGSYzpdpy0UggV1mGVjYYRTH6IgM5VTaCHlYGsihmn02p9VDkEIri/KGU\n4vWxLI7zB1qVmSXLbyT/gJvIRtGHUkioSK+/O4BHKYWmnGUjWdQ/oZPzOVPql/Ch1LoIkmU7U1rW\nYros14dS66aohVNb1lcKOUhOpqjvpItcvgcBdyoUgZRq6yUdgELhQakTO0y+Z2lUk5dXAI1GP/n5\nvEOpZVGTUngrgCUdgD+LHYCKUotHMo41atQqEQapU6cJpX4UbwIhdHJqYJl1vXXrVjo7t7B63rks\nnQPwo+QI+/JuDuDQoUMMC2tDJycDlcrutHYACoWD3M9S1HeUT52uExcuXEiS/OOPP9i8eTgNBk+G\nhramg4MzpZBkPSqVLkxISCBJfvrpImo07lQq/QhoWaNGff7xxx8kpbkhXl71KDllI4v7Oi7L35Ke\ner0PVSo9iysEF6nReFhq+AUFBWzTJkL+Rh6hg4Mbly+/dx9JVaTCOYC8vDx27dqVM2fOtJwLCQmx\nrAh56dKlKhUCMpvNXLFihaU5n5OTw8DABlQqP6A0ymWRbEjelj/WhZRqPTWpVj/Mzp17yIbqI0ob\naLiyOKRSm5IBHiIbiS4EvqcUf68jG7RAOX+sLO8T2VAU1cyKwk/elGryzxFQ0jq+LI2tn0YpXBEi\n/+sr/zj9KIWWTlByCp1lHcIp1fBHErgkn9PJf1tloxMu388iSiGgmnI6ynnnUVq2QicbUqkzUXIS\nRym1OuoRmEBpKKU3i9c2cmDxRDg1pdFBRfdjlsspcnpPyvr8Ij+bhpT6TlxZHAJyJQA53yuUhrsO\noVQzrUWpldGKxctyXJHTecnPNUGWUxQCCpef33uUWkk6Ak+zadP2lm9HpXKhZKgvEkgi4MZhw6Rl\nJ3JyclivXjM6Or5IIIFqdTQVCiMVincJzKZa7c/27cNZu3ZjSs4sgVIoqgalVpy7/E5LhoCuXr1K\nV9ca8n0flZ/PWwS+p0LRmgpFK/mZXrR6nu9w8uS3aTKZ6O0dJK++mkaF4mN6eQUxLi6O06ZN4/Tp\n0/nmmxP5+eef8/Lly9TpPAj0ohTafJk+PsE0mUyMi5tBB4c68vfgayWHlEa1LaDUH+NPKdR3jMBU\nOjn5W9ZIevfdWOp07eT7nkmNJpBffvmVXWyAPalQDsBsNnPgwIEcM2ZMifPjx49nXFwcSTI2NrZK\ndQIPHTqKen1LAu9Sr+/ALl16ypNzrD/qpvKHuplSh21N2Titp1qtkY1fUdp9lGq3PpScQhal0A9k\nI3ZJLKsAACAASURBVNKFksH+i9ICZs3l8qzlhcqGqGioZQ/ZsP1GqXYdSilea6Zk2GvKP7R1soxx\nsgxXSg5mCqXw0UJKTslFNm4qFtc+Sam2+5jV8QVKzq8ovDNTPl/kLFwpxcrVlGrxI+V70svGyyAb\np+GyMWhPySFNo9TCKQqRFOn6h1z+IkoGsKgf4hylPoAzlEYzBcnyvqI0xLa3bKhcKcXNu8j3cUN+\nbssoTXR7hUB/SkNfb1Gq+Uozmx0cfGVZtSi1ztwpGTfrUUtGKpUaHj58mDdu3KBCoaXkaIqe12t0\ndnazdL5mZGQwJmYI1WovKhStCQynUmmgQmGgQvEG1epR8n00YXGr5TtZ5p/ys3VjUFAjfvzx/2g2\nm++w6uwZeW2oRyi1HC/L72uC/H2kU68PZUJCAvft20ejsWQ/jdHYmPv27eNTTz1Lna4NgbHU6VrS\nYPCW9elLqQXqT40mgPv372fz5hGUOufnyd9R0bDTA/JzK3omiyk5BE9KDngUDQYv7tq1Sw4hWc9D\nWcwnnxxoZ2vw71OhHMC2bduoUCjYtGlTNmvWjM2aNePatWuZkZHByMjIKjcM9MKFC3Rycmdx6CGb\nWq0fHRyMLI63Z1OqJarljz2cUu1xEQEvqlQGSs6gqIxMSkZTS8kxuFAywk5yui1WH30vFteEizo5\nTZRqdU4sHrKplfM6s3gJiaI4uSOLhmNKabuxZOhokHzNIKczyjo5ybLPsDj80JhSLblIvyRKYZ0L\nlFodGkoGuyal+K/1MFYDpU7PfBbXyBOsynqeksNJsZIXyuIRTIutnpHO6t5cKPWRGCg5jyLH4EOp\nZVRU/qOUnCJlHRoRWCK/u8mU5kzckvV3lssYRqm1FC3La8jicNAF+f4MLO6PaELAkY6O3lQoDPI9\nelNaJoIEetLRsSGXLFli+cZee+0NqlTWw3Rbs+Riem9RCluR0vDbTpS+l7XyvXtQr/fg2rVrSZJ7\n9+6lXl+bxf1JVwg40te3Noud1VuyHANVKq1lKes///yTWq0Pi0N3t6jVenPt2rXyMGeD/G4b8PYw\n5G8EdDx69Cjd3YPk78iNwMPyOykaCv2C5d6UyonyeetRalOpVDrT17duifNK5SSOGPGyPcyAXalQ\nDqDMQiupAzh69CgNhrpWH+cXVKn86OVVjwpFDUq1qCD5zygbiEcphUM2yj/+ojH9tSl1xvrKxyvl\nMvfKBs2PxbH+jpRqqEVx8yBKoZuJlIxwFKXavDclg9mAUovg/9v78vAqi2T995xsJ/tOgCRsCSQE\nlACCIDggGHEJoiwKKCjiLjjoyLiMio7KchkR96uOCIoXceGKIiBuKF5Rrz93cJTRMCKIowGEAFnP\n+/ujqtJfAL2jF0xy+ep5znPO6a+/7urq7qrqquruwRSNzPwSCRQNeDDFhJKsE7g7xYk4UydoG4pm\nOIISdRQmsF3zttB2DqCzu5dSNO1kihnH7OfZWlae4p1M0axrKSudQZQIo9eVOXzgoe0sCiP1rjhK\n6GzVpAirXDqhN4QiJDLpTBpna9kmzIrozib60VPWMUrffvptZqAUyi7fp7Vs0/zjtG/t/VqKgHxW\n+9qY41al33Sl2TMUBni65slkbGxLXnzxZFZWVvKccy5mw30NPSgnqJqA7aV9+ziF6acpnRPpBNwa\nRkcn85ZbZrB37xImJmZrH/9J259J2Q1OynjJYXR0d/bseex+V1mOH38h4+N7MBC4nvHxPXjOORfz\njjvu0DqtbbcpbSd48N7OYDCGf/zj9YyJOZXi06iihDwnUfZO3MBAII4REVMYFXU+U1Nbs0uXvtou\nK2cBgVEMhXoxOjpB817A1NTWP3tk9xNPLOYxx5zEvn1PYP/+JezV63hed91NzT5s1BcAjQhVVVVs\n27YzIyJupZg3cnVCz9fJXKCMZDnlCIQMiubfSidqR2Ugl+v/8yiM+wyKtvgCxeRgZdxM0VzNkduG\nYtLprQxoBMVM0ZqiPXegLLM76TsrKL6IFIpd1s7zWanvJlHMVcuVQcUpruYwbk8X2bGJIiS6Uhh3\nlOKUS2Gao7V+04CzKKaalRSTS6ri79XCH6Ew4yOVofyOYtZ5Q/8XU7T5jRQTQiJFcJVRGG0GxYST\norjcS9nxPNFTfh7FRj9P299dcYyhMOSnKauJDMWjHYGFjIg4WfP1VTokUoTpSorWmqTtXKT4XKhp\nH1MYY4jC5O3Y53Itg1puPkWwuz466aThfOGFFxgX14YSEPAZIyPzGBXVncLwLYz1GaW7+TuOo4wt\nr1kwXzfJ3UHxFcRQxsqz+ruiPm9ExGUcNWpU/Q7e8vJyLlmyhMuWLeOePXu4ePFiTps2jYsXL+Zn\nn33GkSNHUlZCVtc2LTOesifjKwLD2b//EBYU9GbDld1SeqPLIiJCvPHGaZw9ezY3b97M22+fq2dC\nfUIxj3bUvp/LkSPP4m23TeekSZN4//33/+SO5YULH2dcXDvt2wU69mYzNraEY8ee91uyjIMOvgBo\nZNi4cSP79z+RwWA63cYXUuz3kTrRLW0UhVl31kEfSzGZdGDDCJtailbWjmL22OEpw6JXIimO0Sso\nmrTXLPAfdBr57yix/e3pIkiGKi5Het6pUnw+8qSdRheFVEVh9HdTNPQMyiayAs03lLL6KKYwvAz9\nP1CZQRdP+6rpHLQ30pl0hlOETqbSx1ZHbSkMbzOdxp1DsQGPo9N6X6H4IRLoDmJ7jiKkdlMEqZ0p\nRIrWa5uuEigripYUwfQBZbNdvOJdSSDEUMjMcyl0h82FKYypLZ3wMfrYSmsARds+lmIWXEQRtrbC\ni6A7PJAETmAwGM1du3bxkUfmMzu7kBkZ7ThlytW85pobGROTSRljln+l0m0YRQDF0kXQfKk4hRS/\n4YqfxdHn0IXJ7mF8fHF9BN+GDRuYnp7DxMQTmZh4DAsLe9QfM2GHzAWDxdo2i1J7gjLGTWhnE4hn\nKNSGUVEFSvOwfi6gCEsSeJOJiRkNNqyFw2FOm3Yro6LSKIrNPQRqGRs7lLNn/4Xnnz+Z8fEdmJg4\nnHFxmXziicX7zdGePQfpODBa3UVRtnYyIiK6Wa8CfAHQRKC4eIBnkN2uTClE0Q6NUXSjMF3TApdR\nGHNPCpM0809H/baoGK8QOZnijI2kaNTJ+vGGNC7QiX6BJ+0GiomEFA09hcKgjSnvVXzXed4ZqROu\nhTKJYmUsSTqJjtLfLSjmkEIKsx1CYX6D9HmWtsnqqqQL60zWcjsok7L2ZHiYVpJO/hj9bXikeZ53\n1TK6UARLLN3K40TFsSUbCmkzw0TQbTjbRdHGX6cInHiK+SnVU+bzFGZbSRFgZsozunb19HGB9pcJ\nuROUlnGU8ZBMJ4DMV3MNZYNZQIMM0pmS0poTJpzPli3zGBubwuzsQoqJztqyjLKC6Eagn94Gl6Q4\nZVLCZxPpblb7lkA8ExJ66lEkcQwEejMmpg3PPPPceibcpYtFBaUSGM/o6DG89tob9jlmuo6yksqh\nCO4syjlQ7bWu7ynjNYVi8utEoJBxcT0YCCTpOEgjEMPk5NYNmPjTTz/DFi3aMyYmkdHRKUxKOpYJ\nCV3Yt+/xXL16tfozzH/2IUOhpP32LMgdzd7jVeZQVoXbGRER3azPEfIFQBOBU04ZpoP4EoqZYR1l\nE1MfypEAV+ukn+wZiD8o4/gLhcmb83Oy5g1ShEMbisnCbNCtPEzDwulaUJxiDylTSWTD3bJ30zlw\nI7WMAkrkzZO0jThiU15MicZpozgOVDxbKl6RWufDivdcTbcQzUyKNvxnfb5I8ZlIOblzqNbTTplG\nFF2U02taf0tKVMgWZSpHKiNZrWVla71zKAInURlOAkWwlVHMVQUeWsZQhMMCil09jcLYoih2fVL8\nAIUUgdVG62lH2WH9D+2PWyiadjeKMPqSEnXTmcKEj6aYzT5UOlt0EinCJIoiZDIpYaVxFNPS15SQ\nxza0s5yCwX6UldundBFQ31Miu2zX+AKl42LKIYKZGogQqbTopTQq8OBBRkZ2ZWpqKwYCoyjjdQ5j\nYtL5wAMP8KqrruZ5502kjLd3KKshCXMdOvRMbt68maFQpqe8+Urf8ZRx2Fb77Untu7MpK8PhBCYy\nMjKeoVCSjo0z9PMdgbcYF9eSb731Fv/85z8zIiJJ27SZ0dFj2Lv377hmzRrW1tZy8eLFTEwc3qBN\nUVFJ/OGHHxrMzSVLlugtYo9QFJpkAtMZF9e//nrU5gq+AGgCUF5erptWQjpJH/IMSjtb5xiK+acF\nxYZtZ9tnNRjAMlktVDSd4lAzM4dt1OpOESw3UbSpWM03hsLIkykMdABFo11BYYydKFrjYJ3YQykC\n6zhlID0oES+lWubXlJNGE7U+uWpSGFeXffDO1va0p4vBD3ue52i7htE5q3MpjM/KtVNDr6CLyCHF\n/uu1aY+kaPsjlV43UJhxV7rTTC3vIm1rd60nT989mxJ9M5vCtFtTmGkhhUlN176KY0Pz2qsUc0el\n5vVqls9on/1e6Zih9Z1HMet9R2HCsRRmuZyi7WdQBJuV86DSL41i+7f0++n8GTsoSkAuRQg9SxFQ\nGZQw1imUsXIWZS9CC0+dpJjLLFpqS30dgcBQjei5mcHgBdqeb/X53wkkMjY2la+88gozMtpoP91J\nEaTFlHHSms5H1ZWyarXoqA0EWjItLYeJiRYynNEAh2BwKouL+zAq6ki68TqEwHcMhZLq590XX3zB\nUCiDImhJ8fnEHfDguWXLlvHkk8/kiSeOYGnpcA4efDpnzbq9fud1cwVfADQBmDNnjk7EhRTmdRXd\npH2I7hyeMIV5RlGEhQkN286+RyfNf1EY9n97yhmqeRdQtKv5FEafRxfymKiT6VmduGdoXXbDl90s\nVqeMyDZfZenzEIWBt6GLpInivpfNO1ONOQ63adqVFA3WTFcWslmlZVi6hX9mcP9TQjdTVg7eCJJn\nlLkYDXvQhXxahJWFDLZjQ9u47YI2+/pexcVMXRdono+1rQPoBNfflCZXe8q7ny4aK4myAc+e3aq4\nebXiTP3E0IUCp9OF5cZoWXavwz8Uv0y6I78Nn8l0vo13lV4t2NBcGEsZE6lseHTH23T+kxRP3+bT\nCZ8FistKz3sXUlYd31CEcCaBBL1H2UxsIYqAt9BSC2UeSRFS3k16LzAiIo3z589nQoLdWNeRLrw5\nTFFIYul8X9UUBaOUmZntGsy9E06wlZAJs1wGg3FcsuQ/G4kb/LbgC4AmANOm3aQD/jWK2cHOyj9f\nB6Ud1FWkz46kML8YitbekSI4elIiNOr0PWOgpEQKRSpDyNP3bQv9KrpQxDEUAdFGJ3yqTuo4ei97\nF603ju4WsL9SGFM/CvNNpmj0A7WcG3UihukYWCvKaqGIotHna5vHUTToPIomeiRFE0yg+EQqKGGk\nOZo+nKLlZ1IYfYHmLaUzh9n5/720TWma9y2KYMv35EugCIIudILWu1rpoHX2oTDkHMoKIaj0J0X4\nnkK356Ed3a7rVlqPOXzP148dY2H1/FFplacfC4F9Xfvb9iWE9LtQ06Ypnbdp/hPoznfqQxG0Fkef\no3XaVZ4WpfWc4mdhs1/THc+RpTRKoQisDO3zRK3vY08bbtV2Z1OEbJjCmAspq7capUGx550wZcz8\ngSKgzIGbTyCWaWmtmJSUy4iINEZEdGcwaMEGkyjKkgUIeFeQsiHs2muv49KlS3nEEX2YlNSG8fHZ\nOk7S6CLK3mMgEM+zz564330N/9fAFwBNAHr1MkdbPkWDPJXCuPrSbbw6leI0TaOEoy3RiTdGJ2Es\nJazyb5T47EyK8/IzigAxBj9S3+tDsfk+QzHzZNPtmkykmFpe1Umbq58LlTGcR9EWYyga8TRlBg9S\nVg9tCQT0+fUUc8FxlNDOqVr+Is3bmrI6sbN2cj0TcRWFeSVq2xIoGrcdVtaPcvzzXLpLbmIoDO4/\nKcwthsKYo/V/PIWBT6UIhASKD+VoiompM4WZ3ag42yprNEVgXqd1QevL1nY8Rcfs52pbHtQ2FFFW\nU89RmHhHSuTTq9rP6RRTxV/p7PrXUBj0ZApzzKFo0vdo/SX6vpkGX6aEaMZStPsyyopyDGXM/IWy\nSsimW0kM9/RxIsXp7hV0iRStfj1lLIkjV1Ytg5SOpvW3pozXaygC5VNtexqdc/pTynh7QunYVvtg\nvJY9kyKArtd3iil7IO6jjK952j9pSjPZ25GZ2Zr9+g3QNhXo+y11HHyh/dGawCUcNGgQQ6EWWt59\nWv6RWt6jFP/DowQKGRV1Ivv0GfyL70RoTuALgEaGf/u3OToYR1M0w3iKpvwKhRkXaPowzefduLRI\nJ84wHeBJFIZ2CsVWOpkNN3+1U4awgMJwT6FoTHn67g/KHGLpolBICQV9QidxMoVhW8RRZ4pWXapp\nn+gkb0XZbJZFCYncTlnOSwy1K9sE2YWKaxKdCew5pUd/urDUXIowTKQ4pq2cMRTmewrFDHUtxVcS\npzif4qGvhTsmarnH6e8n9d22mv8ErbOXMgkTooM0LY1ipjEc5lEYdYgNL3Rfp7QnJdombR/6DqD4\nHc6l0/jj6TaTxVIcqMdQmOzFFLOTMemt+9BhkNJ0FEXTTqQ7hymfbue2F4ciTf+OzuRjG9jsciCL\niOpBEWjxFKEyR/PZ6au2gTGZMm4yKMw8V3EYqmVeo9/f0PksbLzGUXwGht9kioD4SPNlaR9dxOjo\nVEZHJ1CEfF+KclNKdwdFO+37HCYk5ChdJnnK/jNdNFmm0jqNwJ8YG5v1f/qIaF8ANCL885//ZEyM\n94TG73Wyt6Uw4ny6qBvbCerd1v4IXSz2jzrR4ujOQqnT/297ys/UiZJKJ0wuoDDyFK0rmhKpYqaa\nHApzjPFMyh3KAE6nW2rfT2Gaj+vkJCXSZyDFERhF0X69jPtxOnt4pOZJpwsRtYm6VvGwYwQ+U9zM\nt1Cq+FhoqIWxmn+jgMKYYyimqYlseAtZS4pAzaSsaCx9EsX5XceG/oEwZRVyqifvPRRTkDHtKygm\nlPfoNouF9PdOTzld6cJ5z9V2/F7bm0TnRA4rvY+mEwApbHgekO1jMGdtDZ3Pw8aRjZMKT7lFdCG6\n3RSHbDYcj/EUZcDMQnZNaIanbIvySqaMhzrtz1PY0C8znWKOjFXal9IxfjuD6VNP/nMpisM7dIqO\nN/w1qO8cpW1P1+dxdKuQJMqYGU4xudk4TqAEW2TQCcBvlLZxjI6O5/nnT6qP96+rq+OVV17D2NgU\nxsYmc8qUP3LatFsZH5/GmJhETpx4WbPZG+ALgEaETz75hAkJFlp3h068aIo5YReFaV2mzOI/9VkC\nJdrkVmUmI+kcYCdSGHA25biIwRRTzB0URtafstLYQQmRNNutXY/YUydLDoUh/V0nRD+68/m9JoIc\nNjxm4AO6zUynUcwS6yian+1VsJDLuZQleDrFpDWSwlDHU5hMppazSMt+RhmGt/4EijC5Usv0ts3s\n/BdRNObuFMb/DwpDbEdZBdxA0aAvpjCiVmx4dMBiih16prb3bc+zB+hOTp1LET6dKOaXLRRNdJTm\nKdK6v9F+TqeE945W3KfQxe8nUjTq31PMLN5LU2ZqvxdrH/emKAqPUnwGtgLZ5nlnMoXh7dI6uil9\nBmoZ4yhj5jzto9Za9+8Vl2spY9BwsnLLKWNyBIWhX6p0rlA821A08hjuv1p6nc6UcyVlDIeUVs9T\nzEx5+s51FOb+Jzrm/6jW84Dim0oxi9kO4uVaZiplRXkhRXCm0q02/kTZ35BJ8QX1YsPx1ZYyZxYw\nIqI9+/c/juXl5Zwz5049uG4TgU2MiurA6OgCSjjvVsbFDeK1105rbPbyL4EvABoRdu3apRtuhlKY\nzFXKFEzTBIWZLddB3VOfjdBBfCadvXMSnSM5oPla6AQbTBEYsXTMpFon2EkUAZFHYX6zKEylF2W5\nXUFnpklXhhGm2Kmj9b3vtLxROkFLdWJlU8wWeRTNtA8lpj2k+PXWOi+hMPJ0CmMrpDv752gKU1+n\nbX5H63+QYgZoS3c0s62kSGFasUrT2+hCKsMUh6jFh1+o9RxFYeBZFJPMbsqqaoDSuQ+FOQ2nRKv8\nQGF2sRTmbieLPu7B4UXtkxQ2vHJzGcWkZKasYVrOJArjS9W+/0SfnUfR5LfQHez3B4oZ5hxtV099\n/xvF+UqK9v2l4vUGnbYfogjbAqVDd8qKyG5+O0vp1ZruFNgfKUw3nbJDuI6ywmlBGT+lFPNOhOL5\nkZZtJ3HmaZu3UfxGQykCwiKZWtFdyGN4Pkq7U8EdoDeG+9/81lnrLlWcS+iEpe2av0PLtoMDU/RT\npHg+qG2xCKZnNd8xFCH8FwLjmJtbwL59h9DtfKaWP8/zfzWLivpy48aNXL9+fZPeKOYLgEaEN998\nUye+HW1cQLcMTtHBbxpLFt0GrRh9bvbdTB34tgTP1cl8HEU7/Hd9tw1F83mNwpyKdCLfQnfvbg6F\nuYQo2qzVn0233I6hO6oglrLkNxPAaM9EWKOTK0Xzf0wXcdJZ22SnY5pPwezNnehsvRF0Jgg7RbQV\nRTvsSmFm3vDDMGU15L3G0mLsx9LtLk6mML/TtdxMOmZjTu6LKRp0SHHI0/QYuiOgU5TmCRRhYXXe\nrnV5TTakMPmximc3yornUopgGaZ4JHv61Ry3kdqHdrWmHdKXqPQyU9wj+n6UtiOXbjf5Bk1vq88y\n6a7stIuD7IRXSy+kuwyoWPsnpPXaJrVaxSdW6y7U33amVXulbaTS7kyKXyidwtDNUZxHFw76tacN\nYyirtc+17+zgvXLKGO2sdLXorSq6s6/MTLhHcVug5ZrpzM5/sjBYo8Wr2lYTnmRc3Ons2bMvg8Fb\nPf15LAMBr8/nHmZm5jEUymR8fAfm53fjli1bGpvdHBB8AdCIcN999+mAzKFolHdTGKGdTfMZZcPR\nZTq591I0kmTKeT2kLFEtlnyHTqa5FEZrxwWn0d0dbCdL2uXjWZpvg9YxQSdUf8rqopDOnHCHTrRW\nFDt5jpZtR1Kn6YTJ0Al0Pd05Nr3pzubJ1HoTKSuNb7VeY8olmvYm3YUjPSgrjWi6e4dPpDCWARSN\nLZNi9x9AYbzezWBvav29lBGEKSaTQrqz96dSNP82ygTOojvpM58S1ZJIsWdfQCes13nqiKWshMbS\nOc3tbuYzKeYW0yz70e1vuJViRjmFosmPpzDVGopmm0cRqB21XGN6yynmmSKKEBhBpzhk0p3F1IPO\n0f47ug1X1yhuthnqbc1j+wzMDr+S7lylMykmnHQ2DA3uwYY+qOe1fXUUU6G9b5cJhbX/jqBTFEzg\nXaC/+1BWAlkUH4uZtAopwjlX25pHiXrqrTToTRHQHTz4hTV/RzqF6wYt91jF4wiKcLGzhlLoLo4n\nY2Iu5g033MCUlFYMhcYxFBrPpKQWTE/PYWzsmQyFJjImJoGhUD/KWAozMvIannTSyMZmNwcEXwA0\nItxyyy0UbegyirZoDPEeiqkhhaLN2HnvZZSlc4CyBK3WSe52QQqzjKGYYNbopOyvg3ExRWuOpwiI\nNRR/QhKFIT2gk+JFOo3Zq9F+TNHgLCJkOSXEtBWFaeboZwUlMsTOvsmlmDRCOqkX6WSNp9i+j6PY\n9/soQzANcq/+T6cw/Q4U5mWOSmhbx1JMHZ9SmLhFzaRrW96laK4t2dBn8RGFOXehEwT/T3Evojsa\neoKWa36IhyhCdoHi4TVHtKMIJtusN5bCLEcrbTPoTv18mcK0h9OZ6hbot3cz1VNKb9uZW0ARRk9R\nBPzrFAFizudZFCY3RfP1UVwytJyTKYpAEsW3dPQ+behCt+nrYYqvpi1FeL1JscnbXoBLKaaq2Zr/\nuH3KSqYEH9hmvwyKkDPbfgLFgZtE8S+8SRFUdifFRKV1pL67iiKkbEU6neJDsv0btqGwgM4ZfZPi\naGMjnjKuLV8RZa79B2V8ztT8l9Gd6jqdwIOMj8/gF198wS1btvDee+/l9OnTedddd/Ghhx7i3Llz\neffdd3P06HPpLi8igU+YnV3Y2OzmgOALgEaEG2+8kWLeMFtoCUUDSaZogG11YkylLENtgJ9OsVkP\nomg+phntZsMjEUjZFZyo6XZufyzd1YSkMJUEZRQvetLvpjD3CkokSwrFbt2bwmAskmUeheklULS+\nhykMZKy2IVnL6UlhhJk6ia9nQ9PVaRQBaKuJRxTXxxQHi/Sw0NBWOjmNgb5GWc6bVt1P01PpTBYD\n6MIfb1a6dKYIgJFar+F7Jp2mXaw4t6ITuE9oPV/q//e1nlaK90ht81CK1huiCIZb6cw1/0URIs9r\n3aUUx/UlmqeOsgo081g+3Xn+tiqbqPQIUZzs71LGQFhxaqE4HKO0+1zrbEUx/6XRmXI+ptvPYDb3\nfO17r7bfRWlvvoQhFIabRneu/6va17WUMdJW6xyp36nariMpwt1oYhvBTNjHKh0toidL331J89sF\nPIWUsWx7SvIoc8WODjd/zECK7yuJziRpq+i/UwRiMp3Z6jjK3Ixn587FrKmpYTgc5vr165mc3JIJ\nCaOYkDCEbdt2Znl5Oe+88y7GxpbQTE8REbdy0KBTG5vdHBB8AdCIICYg6EAcpt9BnRSnUbSQFE0z\ne6qF931G5yyM0wmQRtFYghQNaRnFeRVNcRjaBHtQJ5dN5lM1T0u66/V26MQM0JkDzNEV1vKm6+8B\niltAcYqmYyi79d1ST/2LKMJmMoUhWgy+lW2MyuqGlm9hor0okTfHUVZF/ehC/rJ14lu4bBWFgffT\nSX+qTuwuHpxj6U5D/ULxH04Xsmm42I5b280bQRfaWUQXAhlPCZG0y00s/NT2EQQ8ZUfQ3aHble6o\niyQKw+xEWcXlap8ns+F5+DfRMcgI7YsPlAY1SqOHPbQdrnnOpmzwspDQIN3xEbb7+TU6W3wCnemm\njsKwC7XeoNI0is5pa2GnyRRlwVYMdrHONk3rrG3OovNTVGk5Acr4NzpHeMoJUJj8HMXb5k0KidQg\nfQAAFz5JREFUhelnaLkplI2DFj3kPeH2dqXHldrus7SNC+n8RFd48t9IIJHR0fEMBiOYkJBNUTjk\neXT0hbzqqmtZXV3NkpJhjI9vx6Sk7szO7vizl800JvgCoBFh4cKFOvDaKxOYRdHmLEwxjuKk/J0y\ngCiK9tRDB/bFOlleoGMo11OW3OfRLYtHc/9wzXQK07uE7vpHc/DeSreSsM1jBWwYl307RXsaqfX8\nO0WzflbL+syTtwNFWNj/DXR+gBeUYZTpsy3KNFZo2+5QZtCT4vDbTGEoURRzUzZFi62iMKxErX+v\np76Rmu8Minnhd1rHBM33AYWhW4hnAp0z/CNt+wMUW38W3c7e3ZSoqlyKT6Q9xZacr3Q0p/lpFCbU\ngS5OPYmi/VdRTCGtKAy/jGKDPl7TirWvzbZt11TeQ3dJ0BJPX6dQtPKWdEd+fExhuDcqfmZ2tBXO\nf1Mcr5drG86iMG/bc7Ga7p6DGdp2O8J6rva79WNHbf+tlNh9u7nNTqH1moe6URSD6+n2CsyjCK3u\ndGM7nrJi3UwZl+0oJiQ7RfZ1OqfvEbR7lgX/dXS+qTht3xUUIfY6Rdl4iqLsDNA+MAG4b/TWcrp7\nnD+gu7XuWO2Pf+eoUeeSlL0CH374IdeuXcvdu3c3Mqf5afAFQCNCv379dGLFUphSF52YXei0n0l0\n+wPs1qzzKSYiO37hNWUQAYqNtJhir72HLkSuSCfQXp3ArekuG+lO0aiH6mSxaIjr6eKk+1IY2fs6\n8SzsMZ4NL6Wn1p+quDxLYTi5lDj4nRRzURuK2WOn1nkOhZH8Vevylpemn0108ejjtX1tKczG8p6s\n9U1TXJ+m09hzKcwlpO3bN1Z+FsUnkkgRmBdTGNqdlJXDxxSnaQKd2YcULfA07cs7KBplPN2hdLYy\nucrT317fSh1Fu/Xajd+lCKEUCqO5ncLMh9EJl1LKbukTKCaK6+gcqudSTHhtKYK8k+JyD52z/TSK\nomB17lU8ztRyrqSsCDMpK8lr6PZbTNd2vEwRIN9STCfH0jmZ/0h3Ns9kxf9Rin/jGroD+R7Rem+i\nCLkUusidjZTx+ThlDNu4NtOfbTi0FU6s1rNe6TpUaXMvxUxm+yaOoZhER2tZtm/kBoqSEE+3AvuM\nogj01ufnUDa5DVba30ugN4PBTM6Zc0djs5VfBM1GAKxYsYIFBQXMz8/nzJkzG1baTAVAixYtKOaN\nAEXjyqUwXzsK1xh0Ozrbd4IO1pY6kZPoDsuynY696cwt/6Q7PTOKbvfkGXSHkZmmV0cRPrFsGLb4\npNZlIasd6C56N83K7OI7KQxjIJ15wQ4ai9AyLELFjng+gsK4o5QpZNGdvvkPxfFCClO3DW6G29d0\nt25VKa0sdNWOxDYzjt2Slqm0NhNHHYVhBfU9rx9kuOY3jdpobsc4hylMqzXF5u0VKNfTmSOyFS/z\ndfSgM3l8ov1+juf9h7Rf/+hJW6F9Zldl5ite6ZQVUkdtVyLdju2vtOz+nnJ6UYTvYoppzHb2vqP4\nfURh6L20vuc8715DdxqoCbOOdIcGRlMErO3pSNX2z6eseJI89EygMOdx+v8dyvhJ0H6/St+1wIAj\n6Mb1VspYaU8nLP6m76ZR/DMfaX+bz2e74p5DUQgsKimWosxcp/2YRze27aKhRG1ne4pQuIWyMjTa\nVRCIY0xMMu+++/7GZi3/Mhxs3hnQQg8q1NXVoaCgAC+//DKys7PRq1cvLFq0CJ07dwYABAIBHIJq\nDzkEAgEAQAyAOE3bDSAEoBZAtKZVA4gEEABQByCovwGAmhapv4OaXqPpUZrX8of1d1DzQ/PVaL1B\nrbtO80V5ygsCiNDn0Gf0PLP6azz4Wr0BfV6t7QoAqPL8Dms+K2cvgFitK9LzPj31x+j3HqVfWH8n\naHoFgHhPG42Wcfod9NBtj5Zn9QQVv1h9r1JxrVUaGAS1bHrSw/rbcI3U9FoPDanlB/T5gfLTU1ZA\ncbb+rPWkG+0M9xpPHmu/4e+lu5Vh7fXWbeVau8L6CeonDDdmqjWfd7zUAggjgDqwfhxH7PMsANa3\nwcZ2rZZZs09ddQiCICIRASKsH2kHAexCw75uiIdrh9XnbavRoxIxCCINMShHGCFUYQ9iteU1AKIQ\ngVoEUIc6EPGoRAgJqEAkKkFE40eEEMBFSA7MQV5ee1wxbRrOOvtsNGU42Lwz+D9n+eXw7rvvIj8/\nH+3atUNUVBRGjx6NpUuXHoqqfnMIAUgB8ASAJwGk6ScI4C8AXgRwNIAjAJwIoCuAVAC/B/AygNEQ\nJtUPQF8AqwDMgpsAAQjDu0bzDwOQqfkuAtACQAetby6AlQD6AEjS92cDeAoyca4H8BKAUs1/D4AV\nilMsgCFabwKAkwC0AXC21jtJ8U4F0ANAe817pZY5Up+9qHmjABRDmPIEzXMJgAzIZE1Wmj2l9JoM\n4FgA6UrHxZperG09Xt+LBvCA4thT8Z+r7UtVWkQr/lEAHgbwnKYnaX89BCAXwFmK1yTFcxmA7gC6\nKR3vUjrNA3C19sXl+s5ZEIYVpfR+UfstwkOzNgBK9Pc0fX+8ti0SwM3athIARymdWgHoqP2RBeAZ\nAI976N4J0v/Dtd8GaVvba7vbAhilOF6lOHYEcJziZmOyH2RcXeBpx7GKzwyY0BYGf5Hic5OnL4Ig\nYrSNo7W+K7WcuxSXWZp/IIAOCCMdRDZq0QFh5AJoB+BZAI9qfyYCOFLrmqf9ka/PTOkxmp2geRfr\nexcBiEAVYvAt7kM1RmInOqMWyxHGA9q/U1CHKNQiHkQvVCARP+A4VGIVgOmoRix2IhN34mnWYfrf\n/44/XXQRljzzDA4rOKjrCYWnnnqK559/fv3/xx57jJMmTar/D4DTpk2r/7z22muHAo2DDgCYDPBx\nj8H7KYApACd40rYBDAHM0Oe9PM/qALYGGA1wpyd9HMCumnegJ70WYBrArQDDALsAPFc/luc7rW+M\n/l8KsMTzvAZgnOJFgF8BjAf4EcCgvvspwLZah73XHeANAM8AmHiAdmQB/Fr/d9Y8eZ4ywtqmrgAX\net59GmApwPYAF3vS/0PfJ8AqgJEAbwH4ieK4xZN3IsAIgKkAewAcCnCm5/nb2lfXAfz8AG3rAfAt\nfd9b7qUA5wBcA7DIkx4GmK11/qhpnwNsqc8qFMcqzzuDAT4JcBHA0zzpVQBjAO4GWADwGe3jZZ48\nfwU4VtvwpOYrA5gOsFrr+gNkjNV63usDMAngvXDjgQC3a53DAN4JGQ8VnudjtQ9zAT6h+bz4RgK8\nAmAr7Xt71gvgVH3f0iog47uD0iwE8GiAr3ry3KU4XAZwuif9XYCdIGNr8D44hJRmjwE8CmBvrZuQ\ncfOpJ//1+rkQ4JkAz9K+2+vJcwrAyz3/HwM4asiQxmYzDeC1115rwCsPNsuO/Dnh8GvBTCU/Bzfd\ndNOhqPqQAwFs9/zfpmnb9kmLgmg2VQB2Qpa5EZCl/V6IxrUDos1Ay9yr7/0It3zfDWeGqYWYSQIA\nftinvkgPDiEtz5b5u9HQRLUNzvwAOHPBXsXXTFo7IaaWSM9/w2uvtiVGn+1S3CsUX2964gFoFqP0\n8KZvhzM77PTQNeTJ20qf/6B4VGveDgDK9ykLWn9I21EJZ6b6UXGI2afccgBdNH3fftujdW6HW10Y\nHcy8tguyqrFxEqnPvP2xU+sipG/2Yv9xZe/WKE0jNc1oXKffVfp+AqRvdsGZlLbtU16UtsvG7I9w\nZpht2g4zPXnx3aV5jIZ79b06Txle3HcovnsUl2gP/gY/wI2/fceGmX127IMD4cZ5tNLO3g0doJxW\n+m1mqoDiG4Kjd/U+NIqJi0NTgoEDB2LgwIH1/2+++eaDWn7ETYeAE+/cuRPPPfcczlZ72gsvvIDk\n5GT0798fgDSiOQqAiooKrFm7FqshA2gtgOsgS/RPAXwNYBNkmd0JQGcAf4UwwOWQQXwFhMkMhJhr\nzMTxCmTAV2jZb0IG5CQI00mBmHQI4AMAf9O6vgZwGWRibgLwD8hAXwLgXS3jUshk3AbgSwAXQxjG\n83B221UAWgJYCJkUNym+r0MmWgd9dy2EgU2BTO4MADcC2AAxp2yGmEAqNb0KwEZtn5dmA5SmD0Im\n/BsAboCYGGoVx7DmjwbwFcR0EALwiLYvFUCR1hkDMf1UAFgHMd1kAnhb8dwJ4DH9/SelU0ct934t\nd56WewzELPUFgNe0/VcD2KpteEZxelzzvAhhhp8BmK/tmQPgHe2TVgCeBvA+gO+1P4oBLIAw5UVa\n/xL9/zJkbPyoOD4CMcPcBKC/PssD8CrEZPK40uzPSosu2m9fQsbJFq2zQuudr7R9SttxP1w/VwH4\nJ4Ayxf97iLllj5bVDmLKq4GYuT6DmJeWAfgEwLeQ8RindMiBjMd/AlgKYeDLIaapVMjYeAsy9tdB\n5scPcILVaHaR9vW3ELNQKWRMfaH9kgLgVoiAf1JpkqY02gCgIioKu8JhPK043ANgNYDPoqOBujq8\nAWBWXBzunjcPrVu3RlOFg807D4kTuLa2FgUFBXjllVfQunVr9O7d+/+EExhwq5t4OM3ZnLqADHpz\nFkbDOQJr9Lvak9ecX2FPegScQzcIp2UHPWWZ8y1KP1Vo6ECOgHOSmrMQcE5Uc8LaSsScwNFaltUB\nOAec14Ecq981cA7aGq3PHJzWdnrqiPbQK1rTwnArE3MAxipuYU+bzCGdCKcxE86pGfB8IiHMLnaf\n/rHyKpVGlmbpVUqjKMXFnLohuD6FphuNAp73axUX0zCNrtandUqjKk23PquEc6aHPDiZI9RoW+nB\nxVaEtiKzvvPSL8bzbg2AhLg47N2zR/o1MhKByEigslL6LBhEq+xsVOzdi/IffqinazSAcEwMWmdl\noWLbNtQFAqisrESwrg57SERQ/AaIiEBtXV09XQqKitCpc2d88dFH2FVVhfLvv8feysp6mu+FWxkE\ng0GEw+H6sRobCiEyOhqsq0NNbS2iLT8JBoOICoXQsV07nD52LL7csAFvr1mDrKwsdOjSBWtWrsSW\n775DKCoKofh4pKWno01uLk4cNgxFXbpg8iWXYGtZGTKzs/HgggUIBAJY8MADCASDmHjppSguLkZT\nhoPNOw+JAACAFStWYMqUKairq8PEiRNx7bXXukqbsQDwwQcffGgsaDYC4Gcr9QWADz744MMvhmYR\nBuqDDz744EPTB18A+OCDDz4cpuALAB988MGHwxR8AeCDDz74cJiCLwB88MEHHw5T8AWADz744MNh\nCr4A8MEHH3w4TMEXAD744IMPhyn4AsAHH3zw4TAFXwD44IMPPhym4AsAH3zwwYfDFHwB4IMPPvhw\nmIIvAHzwwQcfDlPwBYAPPvjgw2EKvgDwwQcffDhMwRcAPvjggw+HKfgCwAcffPDhMAVfAPjggw8+\nHKbgC4BfAatXr25sFP5X4OPfuODj33jQnHE/FPCrBcDUqVPRuXNndOvWDcOHD8ePP/5Y/2zGjBno\n2LEjCgsLsWrVqoOCaFOC5j6IfPwbF3z8Gw+aM+6HAn61ADjhhBOwbt06fPTRR+jUqRNmzJgBAFi/\nfj0WL16M9evXY+XKlbj00ksRDocPGsI++OCDDz4cHPjVAqCkpATBoLx+9NFH45tvvgEALF26FGPG\njEFUVBTatWuH/Px8vPvuuwcHWx988MEHHw4e8CBAaWkpH3/8cZLkpEmTuHDhwvpnEydO5NNPP90g\nPwD/43/8j//xP7/iczAhEj8DJSUl2Lp1637p06dPx9ChQwEAt912G6KjozF27NifLCcQCDT4LzLA\nBx988MGHxoSfFQAvvfTSz748f/58LF++HK+88kp9WnZ2NjZt2lT//5tvvkF2dvb/Ek0ffPDBBx8O\nNvxqH8DKlSsxe/ZsLF26FKFQqD791FNPxRNPPIHq6mqUlZVhw4YN6N2790FB1gcffPDBh4MHP7sC\n+DmYPHkyqqurUVJSAgDo27cv7rvvPhQVFeGMM85AUVERIiMjcd999+1nAvLBBx988KEJwEH1KBwA\nrrrqKhYWFvLII4/k6aefzh07dtQ/mz59OvPz81lQUMAXX3yxPv29995j165dmZ+fz8svv/xQo/iL\nYMWKFSwoKGB+fj5nzpzZ2OgcEL7++msOHDiQRUVF7NKlC++8806SZHl5OY8//nh27NiRJSUl3L59\ne/07P9UXjQW1tbUsLi5maWkpyeaF+/bt2zlixAgWFhayc+fOfPvtt5sV/tOnT2dRURG7du3KMWPG\nsLKysknjP2HCBLZo0YJdu3atT/s1+DYW3zkQ/r8V3zzkAmDVqlWsq6sjSV599dW8+uqrSZLr1q1j\nt27dWF1dzbKyMubl5TEcDpMke/XqxXfeeYckedJJJ3HFihWHGs1/CWpra5mXl8eysjJWV1ezW7du\nXL9+fWOjtR98++23/OCDD0iSu3btYqdOnbh+/XpOnTqVs2bNIknOnDnzZ/vC+qyx4Pbbb+fYsWM5\ndOhQkmxWuI8fP54PP/wwSbKmpoY7duxoNviXlZWxffv2rKysJEmeccYZnD9/fpPG/4033uD777/f\ngIH+Enwbm+8cCP/fim8ecgHghSVLlvCss84iKVLMq0EPGTKEa9eu5ZYtW1hYWFifvmjRIl500UW/\nJZo/CW+99RaHDBlS/3/GjBmcMWNGI2L0r8GwYcP40ksvsaCggFu3biUpQqKgoIDkT/dFY8GmTZs4\nePBgvvrqq/UrgOaC+44dO9i+ffv90psL/uXl5ezUqRO3bdvGmpoalpaWctWqVU0e/7KysgYM9Jfi\n29h8Z1/8vXAo+eZvehbQvHnzcPLJJwMAtmzZgpycnPpnOTk52Lx5837p2dnZ2Lx582+J5k/C5s2b\nkZubW//fcG7KsHHjRnzwwQc4+uij8d133yErKwsAkJWVhe+++w7AT/dFY8EVV1yB2bNn1280BNBs\ncC8rK0NmZiYmTJiAHj164IILLsDu3bubDf5paWn4wx/+gDZt2qB169ZISUlBSUlJs8Hf4Jfi25T5\nzqHkmwdFAJSUlOCII47Y7/P888/X5/lX9gs0dWhuzuyKigqMGDECd955JxITExs8CwQCP9uexmrr\nsmXL0KJFC3Tv3v0n94s0VdwBoLa2Fu+//z4uvfRSvP/++4iPj8fMmTMb5GnK+H/55ZeYO3cuNm7c\niC1btqCiogILFy5skKcp438g+J/wbcpwqPnmr44C8sLB2i+Qk5OD7Ozs+mMlLL2p7CPYF+dNmzY1\nkLpNCWpqajBixAiMGzcOp512GgDRhLZu3YqWLVvi22+/RYsWLQA0rb0bb731Fp577jksX74clZWV\n2LlzJ8aNG9cscAdEI8vJyUGvXr0AACNHjsSMGTPQsmXLZoH/e++9h2OOOQbp6ekAgOHDh2Pt2rXN\nBn+DXzJemirf+U345v/OcvU/w4oVK1hUVMTvv/++Qbo5M6qqqvjVV1+xQ4cO9c6M3r178+2332Y4\nHG5STuCamhp26NCBZWVlrKqqarJO4HA4zHHjxnHKlCkN0qdOnVpvP5wxY8Z+jqUD9UVjwurVq+t9\nAM0J92OPPZaff/45SXLatGmcOnVqs8H/ww8/ZJcuXbhnzx6Gw2GOHz+e99xzT5PHf18b+q/BtzH5\nzr74/1Z885ALgPz8fLZp04bFxcUsLi7mJZdcUv/stttuY15eHgsKCrhy5cr6dAtnysvL4+TJkw81\nir8Ili9fzk6dOjEvL4/Tp09vbHQOCGvWrGEgEGC3bt3q6b5ixQqWl5dz8ODBBwyN+6m+aExYvXp1\nfRRQc8L9ww8/5FFHHdUghK854T9r1qz6MNDx48ezurq6SeM/evRotmrVilFRUczJyeG8efN+Fb6N\nxXf2xf/hhx/+zfhmgPQP5vHBBx98OBzBvxHMBx988OEwBV8A+OCDDz4cpuALAB988MGHwxR8AeCD\nDz74cJiCLwB88MEHHw5T8AWADz744MNhCv8fyCuL/nzEPB4AAAAASUVORK5CYII=\n" } ], - "prompt_number": 227 + "prompt_number": 11 }, { "cell_type": "code", @@ -347,13 +347,13 @@ "outputs": [ { "output_type": "pyout", - "prompt_number": 224, + "prompt_number": 12, "text": [ "0.29842756558835093" ] } ], - "prompt_number": 224 + "prompt_number": 12 }, { "cell_type": "code", @@ -400,7 +400,7 @@ "" ], "output_type": "pyout", - "prompt_number": 225, + "prompt_number": 13, "text": [ " stars useful len\n", "stars 1.000000 -0.032726 -0.136726\n", @@ -409,7 +409,47 @@ ] } ], - "prompt_number": 225 + "prompt_number": 13 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "short_text = text[text['len'] <= 150]\n", + "short_text['len'].corr(short_text['useful'])" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "pyout", + "prompt_number": 30, + "text": [ + "0.19325744965570177" + ] + } + ], + "prompt_number": 30 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "long_text = text[text['len'] > 300]\n", + "long_text['len'].corr(long_text['useful'])" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "pyout", + "prompt_number": 27, + "text": [ + "0.13453153935692874" + ] + } + ], + "prompt_number": 27 }, { "cell_type": "code",