-
Notifications
You must be signed in to change notification settings - Fork 317
/
Copy pathMobileNetSsdInferenceTest.hpp
211 lines (173 loc) · 7.98 KB
/
MobileNetSsdInferenceTest.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
//
// Copyright © 2017 Arm Ltd. All rights reserved.
// SPDX-License-Identifier: MIT
//
#pragma once
#include "InferenceTest.hpp"
#include "MobileNetSsdDatabase.hpp"
#include <armnn/utility/Assert.hpp>
#include <armnn/utility/IgnoreUnused.hpp>
#include <armnn/utility/NumericCast.hpp>
#include <armnnUtils/FloatingPointComparison.hpp>
#include <vector>
namespace
{
template<typename Model>
class MobileNetSsdTestCase : public InferenceModelTestCase<Model>
{
public:
MobileNetSsdTestCase(Model& model,
unsigned int testCaseId,
const MobileNetSsdTestCaseData& testCaseData)
: InferenceModelTestCase<Model>(model,
testCaseId,
{ std::move(testCaseData.m_InputData) },
{ k_OutputSize1, k_OutputSize2, k_OutputSize3, k_OutputSize4 })
, m_DetectedObjects(testCaseData.m_ExpectedDetectedObject)
{}
TestCaseResult ProcessResult(const InferenceTestOptions& options) override
{
armnn::IgnoreUnused(options);
// bounding boxes
const std::vector<float>& output1 = mapbox::util::get<std::vector<float>>(this->GetOutputs()[0]);
ARMNN_ASSERT(output1.size() == k_OutputSize1);
// classes
const std::vector<float>& output2 = mapbox::util::get<std::vector<float>>(this->GetOutputs()[1]);
ARMNN_ASSERT(output2.size() == k_OutputSize2);
// scores
const std::vector<float>& output3 = mapbox::util::get<std::vector<float>>(this->GetOutputs()[2]);
ARMNN_ASSERT(output3.size() == k_OutputSize3);
// valid detections
const std::vector<float>& output4 = mapbox::util::get<std::vector<float>>(this->GetOutputs()[3]);
ARMNN_ASSERT(output4.size() == k_OutputSize4);
const size_t numDetections = armnn::numeric_cast<size_t>(output4[0]);
// Check if number of valid detections matches expectations
const size_t expectedNumDetections = m_DetectedObjects.size();
if (numDetections != expectedNumDetections)
{
ARMNN_LOG(error) << "Number of detections is incorrect: Expected (" <<
expectedNumDetections << ")" << " but got (" << numDetections << ")";
return TestCaseResult::Failed;
}
// Extract detected objects from output data
std::vector<DetectedObject> detectedObjects;
const float* outputData = output1.data();
for (unsigned int i = 0u; i < numDetections; i++)
{
// NOTE: Order of coordinates in output data is yMin, xMin, yMax, xMax
float yMin = *outputData++;
float xMin = *outputData++;
float yMax = *outputData++;
float xMax = *outputData++;
DetectedObject detectedObject(
output2.at(i),
BoundingBox(xMin, yMin, xMax, yMax),
output3.at(i));
detectedObjects.push_back(detectedObject);
}
std::sort(detectedObjects.begin(), detectedObjects.end());
std::sort(m_DetectedObjects.begin(), m_DetectedObjects.end());
// Compare detected objects with expected results
std::vector<DetectedObject>::const_iterator it = detectedObjects.begin();
for (unsigned int i = 0; i < numDetections; i++)
{
if (it == detectedObjects.end())
{
ARMNN_LOG(error) << "No more detected objects found! Index out of bounds: " << i;
return TestCaseResult::Abort;
}
const DetectedObject& detectedObject = *it;
const DetectedObject& expectedObject = m_DetectedObjects[i];
if (detectedObject.m_Class != expectedObject.m_Class)
{
ARMNN_LOG(error) << "Prediction for test case " << this->GetTestCaseId() <<
" is incorrect: Expected (" << expectedObject.m_Class << ")" <<
" but predicted (" << detectedObject.m_Class << ")";
return TestCaseResult::Failed;
}
if(!armnnUtils::within_percentage_tolerance(detectedObject.m_Confidence, expectedObject.m_Confidence))
{
ARMNN_LOG(error) << "Confidence of prediction for test case " << this->GetTestCaseId() <<
" is incorrect: Expected (" << expectedObject.m_Confidence << ") +- 1.0 pc" <<
" but predicted (" << detectedObject.m_Confidence << ")";
return TestCaseResult::Failed;
}
if (!armnnUtils::within_percentage_tolerance(detectedObject.m_BoundingBox.m_XMin,
expectedObject.m_BoundingBox.m_XMin) ||
!armnnUtils::within_percentage_tolerance(detectedObject.m_BoundingBox.m_YMin,
expectedObject.m_BoundingBox.m_YMin) ||
!armnnUtils::within_percentage_tolerance(detectedObject.m_BoundingBox.m_XMax,
expectedObject.m_BoundingBox.m_XMax) ||
!armnnUtils::within_percentage_tolerance(detectedObject.m_BoundingBox.m_YMax,
expectedObject.m_BoundingBox.m_YMax))
{
ARMNN_LOG(error) << "Detected bounding box for test case " << this->GetTestCaseId() <<
" is incorrect";
return TestCaseResult::Failed;
}
++it;
}
return TestCaseResult::Ok;
}
private:
static constexpr unsigned int k_Shape = 10u;
static constexpr unsigned int k_OutputSize1 = k_Shape * 4u;
static constexpr unsigned int k_OutputSize2 = k_Shape;
static constexpr unsigned int k_OutputSize3 = k_Shape;
static constexpr unsigned int k_OutputSize4 = 1u;
std::vector<DetectedObject> m_DetectedObjects;
};
template <typename Model>
class MobileNetSsdTestCaseProvider : public IInferenceTestCaseProvider
{
public:
template <typename TConstructModelCallable>
explicit MobileNetSsdTestCaseProvider(TConstructModelCallable constructModel)
: m_ConstructModel(constructModel)
{}
virtual void AddCommandLineOptions(cxxopts::Options& options, std::vector<std::string>& required) override
{
options
.allow_unrecognised_options()
.add_options()
("d,data-dir", "Path to directory containing test data", cxxopts::value<std::string>(m_DataDir));
required.emplace_back("data-dir");
Model::AddCommandLineOptions(options, m_ModelCommandLineOptions, required);
}
virtual bool ProcessCommandLineOptions(const InferenceTestOptions& commonOptions) override
{
if (!ValidateDirectory(m_DataDir))
{
return false;
}
m_Model = m_ConstructModel(commonOptions, m_ModelCommandLineOptions);
if (!m_Model)
{
return false;
}
std::pair<float, int32_t> qParams = m_Model->GetInputQuantizationParams();
m_Database = std::make_unique<MobileNetSsdDatabase>(m_DataDir.c_str(), qParams.first, qParams.second);
if (!m_Database)
{
return false;
}
return true;
}
std::unique_ptr<IInferenceTestCase> GetTestCase(unsigned int testCaseId) override
{
std::unique_ptr<MobileNetSsdTestCaseData> testCaseData = m_Database->GetTestCaseData(testCaseId);
if (!testCaseData)
{
return nullptr;
}
return std::make_unique<MobileNetSsdTestCase<Model>>(*m_Model, testCaseId, *testCaseData);
}
private:
typename Model::CommandLineOptions m_ModelCommandLineOptions;
std::function<std::unique_ptr<Model>(const InferenceTestOptions &,
typename Model::CommandLineOptions)> m_ConstructModel;
std::unique_ptr<Model> m_Model;
std::string m_DataDir;
std::unique_ptr<MobileNetSsdDatabase> m_Database;
};
} // anonymous namespace