Skip to content

Latest commit

 

History

History
51 lines (29 loc) · 1.56 KB

README.md

File metadata and controls

51 lines (29 loc) · 1.56 KB

Topological Neural Networks go Persistent, Equivariant and Continuous

Yogesh Verma | Amauri H. Souza | Vikas Garg

The repository is developed on the intersection of RePHINE, TOGL, EMPSN and AbODE. Please refer to their repos for specific requirements.

Prerequisites

Training

Graph Classification

Comparison with RePHINE

cd RePHINE/
python -u main_2d.py  --dataset {PROTEINS_full/NCI109/NCI1/IMDB-BINARY}  --gnn {gin/gcn} --diagram_type {standard/rephine}  --nsteps 20 

Comparison with TOGL

cd RePHINE/
python -u main_togl.py --dataset {ENZYMES/DD/Proteins} --gnn {gin/gcn}

QM9 Property Prediction

cd empsn/
python -u main_qm9.py --target_name {mu,alpha,gap,r2,zpve,Cv,homo,lumo} --epochs 1000 --dis 4.0 --dim 2 --num_hidden 77 --seed 42 --model_name {empsn_rephine_cont/empsn_rephine}

CDR-H3 Antibody Design

Download the train/test/val files from here. Kindly add the paths to these files in train_topnets.py file.

cd Antibody/
python -u train_topnets.py --cdr 3