-
Notifications
You must be signed in to change notification settings - Fork 0
/
datavisualizationprogram.cpp
executable file
·281 lines (204 loc) · 7.5 KB
/
datavisualizationprogram.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
#include "datavisualizationprogram.h"
#include <clusteringclass.h>
#include <pcaclass.h>
#include <data.h>
#include <dataset.h>
#include <visualization.h>
//Assert permet d'arreter le code en cas d'erreur lors des test unitaire
#include <assert.h>
Datavisualizationprogram::Datavisualizationprogram()
{
}
Datavisualizationprogram::Datavisualizationprogram(QList<int> inputParams, std::vector<int> size, QString valueVariable ,QString path)
{
m_path = path.toUtf8().constData();;//string
// Test Unitaire n.8:
if(m_path.length()<=0)
{
std::cout << "Erreur : Test Unitaire 8 Échoué" ;
assert (1==1);
}
m_auto = std::max(inputParams[5],std::max(inputParams[7],std::max(inputParams[9], inputParams[11])));; //int
m_manuel = std::max(inputParams[0], inputParams[2]); //int
// Test Unitaire n.9:
if(m_auto>-1 && m_manuel>-1)
{
std::cout << "Erreur : Test Unitaire 9 Échoué" ;
assert (1==1);
}
else if(m_auto<=-1 && m_manuel<=-1)
{
std::cout << "Erreur : Test Unitaire 9 Échoué" ;
assert (1==1);
}
m_c2d_1 = inputParams[0]; //int
m_c2d_2 = inputParams[1]; //int
m_c3d_1 = inputParams[2]; //int
m_c3d_2 = inputParams[3]; //int
m_c3d_3 = inputParams[4]; //int
m_kpca = std::max(inputParams[12],std::max(inputParams[10],std::max(inputParams[6], inputParams[8]))); //int
m_kclus = std::max(inputParams[5],std::max(inputParams[7],std::max(inputParams[9], inputParams[11]))); //int
m_linearKmean = inputParams[5]; //int
m_polynomialKmean = inputParams[7]; //int
m_radialbasisKmean = inputParams[9]; //int
m_spectralClustering = inputParams[11]; //int
m_varAreCol = valueVariable.toUtf8().constData(); //std::string
if(m_varAreCol == " Colonnes")
{
m_nb_rows = size[1];
m_nb_cols = size[0];
}
// Test Unitaire n.1
if(m_nb_rows<=0 || m_nb_cols<=0)
{
std::cout << "Erreur : Test Unitaire 1 Échoué" ;
assert (1==1);
}
// Test Unitaire n.10:
if(m_c2d_1<0 || m_c2d_2<0 || m_c3d_1<0 || m_c3d_2<0 || m_c3d_3<0)
{
std::cout << "Erreur : Test Unitaire 10 Échoué" ;
assert (1==1);
}
else if (m_c2d_1>m_nb_rows || m_c2d_2>m_nb_rows || m_c3d_1>m_nb_rows || m_c3d_2>m_nb_rows || m_c3d_3>m_nb_rows)
{
std::cout << "Erreur : Test Unitaire 10 Échoué" ;
assert (1==1);
}
}
void Datavisualizationprogram::run()
{
//Put dataset into an Eigen::MatrixXf
Dataset dataset(m_path, m_nb_rows, m_nb_cols);
Eigen::MatrixXf tempinputData(dataset.get_nb_rows(), dataset.get_nb_columns());
// Test Unitaire n.2:
if(tempinputData.size()<=0)
{
std::cout << "Erreur : Test Unitaire 2 Échoué" ;
assert (1==1);
}
for(int i = 0; i < tempinputData.rows(); i++)
{
for(int j = 0; j < tempinputData.cols(); j++)
{
tempinputData(i,j) = dataset.get_element(i,j);
}
}
Eigen::MatrixXf inputData;
if(m_varAreCol == " Colonnes")
{
inputData.resize(tempinputData.cols(), tempinputData.rows());
inputData = tempinputData.transpose();
}
else
{
inputData.resize(tempinputData.rows(), tempinputData.cols());
inputData = tempinputData;
//bla = inputData;
}
// Test Unitaire n.3:
if(inputData.size()<=0)
{
std::cout << "Erreur : Test Unitaire 3 Échoué" ;
assert (1==1);
}
std::cout << inputData << std::endl;
//If user chooses manuel processing of data
if(m_manuel > -1)
{
std::vector<Eigen::MatrixXf> listData;
if(m_c2d_1 > -1)
{
Eigen::MatrixXf manualData(2, 1);
for(int i = 0; i < inputData.cols(); i++)
{
manualData(0,0) = inputData(m_c2d_1, i);
manualData(1,0) = inputData(m_c2d_2, i);
listData.push_back(manualData);
}
// Test Unitaire n.4:
if(listData.size()<=0)
{
std::cout << "Erreur : Test Unitaire 4 Échoué" ;
assert (1==1);
}
std::vector<unsigned long> a;
a.push_back(1);
visualization visualizationObject(2, 1, listData, a);
visualizationObject.visualize();
}
else
{
std::vector<Eigen::MatrixXf> listData;
Eigen::MatrixXf manualData(3, 1);
for(int i = 0; i < inputData.cols(); i++)
{
manualData(0,0) = inputData(m_c3d_1, i);
manualData(1,0) = inputData(m_c3d_2, i);
manualData(2,0) = inputData(m_c3d_3, i);
listData.push_back(manualData);
}
// Test Unitaire n.5:
if(listData.size()<=0)
{
std::cout << "Erreur : Test Unitaire 5 Échoué" ;
assert (1==1);
}
std::vector<unsigned long> a;
a.push_back(1);
visualization visualizationObject(3, 1, listData, a);
visualizationObject.visualize();
}
}
//If user choses automatic processing of data
if(m_auto > -1)
{
// Test Unitaire n.11:
if(m_kpca<=-1 && m_kclus <=-1 && m_linearKmean <=-1 && m_polynomialKmean<=-1 && m_radialbasisKmean<=-1 && m_spectralClustering <=-1)
{
std::cout << "Erreur : Test Unitaire 11 Échoué" ;
assert (1==1);
}
Pcaclass pca(inputData.rows(), inputData.cols(), inputData);
pca.runPCA();
std::vector<Eigen::MatrixXf> listprojecteddata = pca.projectDataOnEigVec(m_kpca);
// Test Unitaire n.6:
if(listprojecteddata.size()<=0)
{
std::cout << "Erreur : Test Unitaire 6 Échoué" ;
assert (1==1);
}
int method = 0;
if(m_linearKmean > -1)
{
method = 0;
}
else if (m_polynomialKmean > -1)
{
method = 1;
}
else if (m_radialbasisKmean > -1)
{
method = 2;
}
else
{
method = 3;
}
std::vector< dlib::matrix<float> > input_data_Clustering;
for(int i = 0; i < listprojecteddata.size(); i++)
{
input_data_Clustering.push_back(dlib::mat(listprojecteddata[i]));
}
// Test Unitaire n.7:
if(input_data_Clustering.size()<=0)
{
std::cout << "Erreur : Test Unitaire 7 Échoué" ;
assert (1==1);
}
Clusteringclass cluster(input_data_Clustering[0].nr(), m_kclus, method, input_data_Clustering);
cluster.runClustering();
visualization visualizationObject(3, 2, input_data_Clustering, cluster.get_assigned_cluster());
visualizationObject.visualize();
}
}