forked from zesicus/howtrader
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrade_by_trade.py
290 lines (223 loc) · 8.57 KB
/
trade_by_trade.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
from howtrader.app.cta_strategy.backtesting import BacktestingEngine, OptimizationSetting
from howtrader.app.cta_strategy.strategies.turtle_signal_strategy import TurtleSignalStrategy
from datetime import datetime
engine = BacktestingEngine()
engine.set_parameters(
vt_symbol="BTCUSDT.BINANCE",
interval="1h",
start=datetime(2017, 1, 1),
end=datetime(2019, 11, 30),
rate=1 / 10000,
slippage=0.5,
size=1,
pricetick=0.5,
capital=1_000_000,
)
engine.add_strategy(TurtleSignalStrategy, {})
engine.load_data()
engine.run_backtesting()
df = engine.calculate_result()
engine.calculate_statistics()
engine.show_chart()
import pandas as pd
from datetime import datetime
import matplotlib.pyplot as plt
import numpy as np
pd.set_option('mode.chained_assignment', None)
def calculate_trades_result(trades):
"""
Deal with trade data
"""
dt, direction, offset, price, volume = [], [], [], [], []
for i in trades.values():
dt.append(i.datetime)
direction.append(i.direction.value)
offset.append(i.offset.value)
price.append(i.price)
volume.append(i.volume)
# Generate DataFrame with datetime, direction, offset, price, volume
df = pd.DataFrame()
df["direction"] = direction
df["offset"] = offset
df["price"] = price
df["volume"] = volume
df["current_time"] = dt
df["last_time"] = df["current_time"].shift(1)
# Calculate trade amount
df["amount"] = df["price"] * df["volume"]
df["acum_amount"] = df["amount"].cumsum()
# Calculate pos, net pos(with direction), acumluation pos(with direction)
def calculate_pos(df):
if df["direction"] == "多":
result = df["volume"]
else:
result = - df["volume"]
return result
df["pos"] = df.apply(calculate_pos, axis=1)
df["net_pos"] = df["pos"].cumsum()
df["acum_pos"] = df["volume"].cumsum()
# Calculate trade result, acumulation result
# ej: trade result(buy->sell) means (new price - old price) * volume
df["result"] = -1 * df["pos"] * df["price"]
df["acum_result"] = df["result"].cumsum()
# Filter column data when net pos comes to zero
def get_acum_trade_result(df):
if df["net_pos"] == 0:
return df["acum_result"]
df["acum_trade_result"] = df.apply(get_acum_trade_result, axis=1)
def get_acum_trade_volume(df):
if df["net_pos"] == 0:
return df["acum_pos"]
df["acum_trade_volume"] = df.apply(get_acum_trade_volume, axis=1)
def get_acum_trade_duration(df):
if df["net_pos"] == 0:
return df["current_time"] - df["last_time"]
df["acum_trade_duration"] = df.apply(get_acum_trade_duration, axis=1)
def get_acum_trade_amount(df):
if df["net_pos"] == 0:
return df["acum_amount"]
df["acum_trade_amount"] = df.apply(get_acum_trade_amount, axis=1)
# Select row data with net pos equil to zero
df = df.dropna()
return df
def generate_trade_df(trades, size, rate, slippage, capital):
"""
Calculate trade result from increment
"""
df = calculate_trades_result(trades)
trade_df = pd.DataFrame()
trade_df["close_direction"] = df["direction"]
trade_df["close_time"] = df["current_time"]
trade_df["close_price"] = df["price"]
trade_df["pnl"] = df["acum_trade_result"] - \
df["acum_trade_result"].shift(1).fillna(0)
trade_df["volume"] = df["acum_trade_volume"] - \
df["acum_trade_volume"].shift(1).fillna(0)
trade_df["duration"] = df["current_time"] - \
df["last_time"]
trade_df["turnover"] = df["acum_trade_amount"] - \
df["acum_trade_amount"].shift(1).fillna(0)
trade_df["commission"] = trade_df["turnover"] * rate
trade_df["slipping"] = trade_df["volume"] * size * slippage
trade_df["net_pnl"] = trade_df["pnl"] - \
trade_df["commission"] - trade_df["slipping"]
result = calculate_base_net_pnl(trade_df, capital)
return result
def calculate_base_net_pnl(df, capital):
"""
Calculate statistic base on net pnl
"""
df["acum_pnl"] = df["net_pnl"].cumsum()
df["balance"] = df["acum_pnl"] + capital
df["return"] = np.log(
df["balance"] / df["balance"].shift(1)
).fillna(0)
df["highlevel"] = (
df["balance"].rolling(
min_periods=1, window=len(df), center=False).max()
)
df["drawdown"] = df["balance"] - df["highlevel"]
df["ddpercent"] = df["drawdown"] / df["highlevel"] * 100
df.reset_index(drop=True, inplace=True)
return df
def buy2sell(df, capital):
"""
Generate DataFrame with only trade from buy to sell
"""
buy2sell = df[df["close_direction"] == "空"]
result = calculate_base_net_pnl(buy2sell, capital)
return result
def short2cover(df, capital):
"""
Generate DataFrame with only trade from short to cover
"""
short2cover = df[df["close_direction"] == "多"]
result = calculate_base_net_pnl(short2cover, capital)
return result
def statistics_trade_result(df, capital, show_chart=True):
""""""
end_balance = df["balance"].iloc[-1]
max_drawdown = df["drawdown"].min()
max_ddpercent = df["ddpercent"].min()
pnl_medio = df["net_pnl"].mean()
trade_count = len(df)
duration_medio = df["duration"].mean().total_seconds() / 3600
commission_medio = df["commission"].mean()
slipping_medio = df["slipping"].mean()
win = df[df["net_pnl"] > 0]
win_amount = win["net_pnl"].sum()
win_pnl_medio = win["net_pnl"].mean()
win_duration_medio = win["duration"].mean().total_seconds() / 3600
win_count = len(win)
loss = df[df["net_pnl"] < 0]
loss_amount = loss["net_pnl"].sum()
loss_pnl_medio = loss["net_pnl"].mean()
loss_duration_medio = loss["duration"].mean().total_seconds() / 3600
loss_count = len(loss)
winning_rate = win_count / trade_count
win_loss_pnl_ratio = - win_pnl_medio / loss_pnl_medio
total_return = (end_balance / capital - 1) * 100
return_drawdown_ratio = -total_return / max_ddpercent
output(f"起始资金:\t{capital:,.2f}")
output(f"结束资金:\t{end_balance:,.2f}")
output(f"总收益率:\t{total_return:,.2f}%")
output(f"最大回撤: \t{max_drawdown:,.2f}")
output(f"百分比最大回撤: {max_ddpercent:,.2f}%")
output(f"收益回撤比:\t{return_drawdown_ratio:,.2f}")
output(f"总成交次数:\t{trade_count}")
output(f"盈利成交次数:\t{win_count}")
output(f"亏损成交次数:\t{loss_count}")
output(f"胜率:\t\t{winning_rate:,.2f}")
output(f"盈亏比:\t\t{win_loss_pnl_ratio:,.2f}")
output(f"平均每笔盈亏:\t{pnl_medio:,.2f}")
output(f"平均持仓小时:\t{duration_medio:,.2f}")
output(f"平均每笔手续费:\t{commission_medio:,.2f}")
output(f"平均每笔滑点:\t{slipping_medio:,.2f}")
output(f"总盈利金额:\t{win_amount:,.2f}")
output(f"盈利交易均值:\t{win_pnl_medio:,.2f}")
output(f"盈利持仓小时:\t{win_duration_medio:,.2f}")
output(f"总亏损金额:\t{loss_amount:,.2f}")
output(f"亏损交易均值:\t{loss_pnl_medio:,.2f}")
output(f"亏损持仓小时:\t{loss_duration_medio:,.2f}")
if not show_chart:
return
plt.figure(figsize=(10, 12))
acum_pnl_plot = plt.subplot(3, 1, 1)
acum_pnl_plot.set_title("Balance Plot")
df["balance"].plot(legend=True)
pnl_plot = plt.subplot(3, 1, 2)
pnl_plot.set_title("Pnl Per Trade")
df["net_pnl"].plot(legend=True)
distribution_plot = plt.subplot(3, 1, 3)
distribution_plot.set_title("Trade Pnl Distribution")
df["net_pnl"].hist(bins=100)
plt.show()
def output(msg):
"""
Output message with datetime.
"""
print(f"{datetime.now()}\t{msg}")
def exhaust_trade_result(
trades,
size: int = 10,
rate: float = 0.0,
slippage: float = 0.0,
capital: int = 1000000,
show_long_short_condition=True
):
"""
Exhaust all trade result.
"""
total_trades = generate_trade_df(trades, size, rate, slippage, capital)
statistics_trade_result(total_trades, capital)
if not show_long_short_condition:
return
long_trades = buy2sell(total_trades, capital)
short_trades = short2cover(total_trades, capital)
output("-----------------------")
output("纯多头交易")
statistics_trade_result(long_trades, capital)
output("-----------------------")
output("纯空头交易")
statistics_trade_result(short_trades, capital)
exhaust_trade_result(engine.trades, size=1, rate=8 / 10000, slippage=0.5)