Skip to content

Latest commit

 

History

History
183 lines (126 loc) · 5.29 KB

meta.rst

File metadata and controls

183 lines (126 loc) · 5.29 KB

Metaprogramming

Taichi provides metaprogramming infrastructures. Metaprogramming can

  • Unify the development of dimensionality-dependent code, such as 2D/3D physical simulations
  • Improve run-time performance by from run-time costs to compile time
  • Simplify the development of Taichi standard library

Taichi kernels are lazily instantiated and a lot of computation can happen at compile-time. Every kernel in Taichi is a template kernel, even if it has no template arguments.

Template metaprogramming

You may use ti.template() as a type hint to pass a tensor as an argument. For example:

@ti.kernel
def copy(x: ti.template(), y: ti.template()):
    for i in x:
        y[i] = x[i]

a = ti.var(ti.f32, 4)
b = ti.var(ti.f32, 4)
c = ti.var(ti.f32, 12)
d = ti.var(ti.f32, 12)
copy(a, b)
copy(c, d)

As shown in the example above, template programming may enable us to reuse our code and provide more flexibility.

Dimensionality-independent programming using grouped indices

However, the copy template shown above is not perfect. For example, it can only be used to copy 1D tensors. What if we want to copy 2D tensors? Do we have to write another kernel?

@ti.kernel
def copy2d(x: ti.template(), y: ti.template()):
    for i, j in x:
        y[i, j] = x[i, j]

Not necessary! Taichi provides ti.grouped syntax which enables you to pack loop indices into a grouped vector to unify kernels of different dimensionalities. For example:

@ti.kernel
def copy(x: ti.template(), y: ti.template()):
    for I in ti.grouped(y):
        # I is a vector with same dimensionality with x and data type i32
        # If y is 0D, then I = ti.Vector([]), which is equivalent to `None` when used in x[I]
        # If y is 1D, then I = ti.Vector([i])
        # If y is 2D, then I = ti.Vector([i, j])
        # If y is 3D, then I = ti.Vector([i, j, k])
        # ...
        x[I] = y[I]

@ti.kernel
def array_op(x: ti.template(), y: ti.template()):
    # if tensor x is 2D:
    for I in ti.grouped(x): # I is simply a 2D vector with data type i32
        y[I + ti.Vector([0, 1])] = I[0] + I[1]

    # then it is equivalent to:
    for i, j in x:
        y[i, j + 1] = i + j

Tensor metadata

Sometimes it is useful to get the data type (tensor.dtype) and shape (tensor.shape) of tensors. These attributes can be accessed in both Taichi- and Python-scopes.

@ti.func
def print_tensor_info(x: ti.template()):
  print('Tensor dimensionality is', len(x.shape))
  for i in ti.static(range(len(x.shape))):
    print('Size alone dimension', i, 'is', x.shape[i])
  ti.static_print('Tensor data type is', x.dtype)

See :ref:`scalar_tensor` for more details.

Note

For sparse tensors, the full domain shape will be returned.

Matrix & vector metadata

Getting the number of matrix columns and rows will allow you to write dimensionality-independent code. For example, this can be used to unify 2D and 3D physical simulators.

matrix.m equals to the number of columns of a matrix, while matrix.n equals to the number of rows of a matrix. Since vectors are considered as matrices with one column, vector.n is simply the dimensionality of the vector.

@ti.kernel
def foo():
  matrix = ti.Matrix([[1, 2], [3, 4], [5, 6]])
  print(matrix.n)  # 2
  print(matrix.m)  # 3
  vector = ti.Vector([7, 8, 9])
  print(vector.n)  # 3
  print(vector.m)  # 1

Compile-time evaluations

Using compile-time evaluation will allow certain computations to happen when kernels are being instantiated. This saves the overhead of those computations at runtime.

  • Use ti.static for compile-time branching (for those who come from C++17, this is if constexpr.):
enable_projection = True

@ti.kernel
def static():
  if ti.static(enable_projection): # No runtime overhead
    x[0] = 1
  • Use ti.static for forced loop unrolling:
@ti.kernel
def func():
  for i in ti.static(range(4)):
      print(i)

  # is equivalent to:
  print(0)
  print(1)
  print(2)
  print(3)

When to use for loops with ti.static

There are several reasons why ti.static for loops should be used.

  • Loop unrolling for performance.
  • Loop over vector/matrix elements. Indices into Taichi matrices must be a compile-time constant. Indexing into taichi tensors can be run-time variables. For example, if x is a 1-D tensor of 3D vector, accessed as x[tensor_index][matrix index]. The first index can be variable, yet the second must be a constant.

For example, code for resetting this tensor of vectors should be

@ti.kernel
def reset():
  for i in x:
    for j in ti.static(range(x.n)):
      # The inner loop must be unrolled since j is a vector index instead
      # of a global tensor index.
      x[i][j] = 0