-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
228 lines (176 loc) Β· 6.39 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import streamlit as st
import numpy as np
from pandas import DataFrame
from keybert import KeyBERT
# For Flair (Keybert)
from flair.embeddings import TransformerDocumentEmbeddings
import seaborn as sns
# For download buttons
from functionforDownloadButtons import download_button
import os
import json
st.set_page_config(
page_title="BERT Keyword Extractor",
page_icon="π",
)
def _max_width_():
max_width_str = f"max-width: 1400px;"
st.markdown(
f"""
<style>
.reportview-container .main .block-container{{
{max_width_str}
}}
</style>
""",
unsafe_allow_html=True,
)
_max_width_()
c30, c31, c32 = st.columns([2.5, 1, 3])
with c30:
# st.image("logo.png", width=400)
st.title("π BERT Keyword Extractor")
st.header("")
with st.expander("βΉοΈ - About this app", expanded=True):
st.write(
"""
- The *BERT Keyword Extractor* app is an easy-to-use interface built in Streamlit for the amazing [KeyBERT](https://github.com/MaartenGr/KeyBERT) library from Maarten Grootendorst!
- It uses a minimal keyword extraction technique that leverages multiple NLP embeddings and relies on [Transformers] (https://huggingface.co/transformers/) π€ to create keywords/keyphrases that are most similar to a document.
"""
)
st.markdown("")
st.markdown("")
st.markdown("## **π Paste document **")
with st.form(key="my_form"):
ce, c1, ce, c2, c3 = st.columns([0.07, 1, 0.07, 5, 0.07])
with c1:
ModelType = st.radio(
"Choose your model",
["DistilBERT (Default)", "Flair"],
help="At present, you can choose between 2 models (Flair or DistilBERT) to embed your text. More to come!",
)
if ModelType == "Default (DistilBERT)":
# kw_model = KeyBERT(model=roberta)
@st.cache(allow_output_mutation=True)
def load_model():
return KeyBERT(model=roberta)
kw_model = load_model()
else:
@st.cache(allow_output_mutation=True)
def load_model():
return KeyBERT("distilbert-base-nli-mean-tokens")
kw_model = load_model()
top_N = st.slider(
"# of results",
min_value=1,
max_value=30,
value=10,
help="You can choose the number of keywords/keyphrases to display. Between 1 and 30, default number is 10.",
)
min_Ngrams = st.number_input(
"Minimum Ngram",
min_value=1,
max_value=4,
help="""The minimum value for the ngram range.
*Keyphrase_ngram_range* sets the length of the resulting keywords/keyphrases.
To extract keyphrases, simply set *keyphrase_ngram_range* to (1, 2) or higher depending on the number of words you would like in the resulting keyphrases.""",
# help="Minimum value for the keyphrase_ngram_range. keyphrase_ngram_range sets the length of the resulting keywords/keyphrases. To extract keyphrases, simply set keyphrase_ngram_range to (1, # 2) or higher depending on the number of words you would like in the resulting keyphrases.",
)
max_Ngrams = st.number_input(
"Maximum Ngram",
value=2,
min_value=1,
max_value=4,
help="""The maximum value for the keyphrase_ngram_range.
*Keyphrase_ngram_range* sets the length of the resulting keywords/keyphrases.
To extract keyphrases, simply set *keyphrase_ngram_range* to (1, 2) or higher depending on the number of words you would like in the resulting keyphrases.""",
)
StopWordsCheckbox = st.checkbox(
"Remove stop words",
help="Tick this box to remove stop words from the document (currently English only)",
)
use_MMR = st.checkbox(
"Use MMR",
value=True,
help="You can use Maximal Margin Relevance (MMR) to diversify the results. It creates keywords/keyphrases based on cosine similarity. Try high/low 'Diversity' settings below for interesting variations.",
)
Diversity = st.slider(
"Keyword diversity (MMR only)",
value=0.5,
min_value=0.0,
max_value=1.0,
step=0.1,
help="""The higher the setting, the more diverse the keywords.
Note that the *Keyword diversity* slider only works if the *MMR* checkbox is ticked.
""",
)
with c2:
doc = st.text_area(
"Paste your text below (max 500 words)",
height=510,
)
MAX_WORDS = 500
import re
res = len(re.findall(r"\w+", doc))
if res > MAX_WORDS:
st.warning(
"β οΈ Your text contains "
+ str(res)
+ " words."
+ " Only the first 500 words will be reviewed. Stay tuned as increased allowance is coming! π"
)
doc = doc[:MAX_WORDS]
submit_button = st.form_submit_button(label="β¨ Get me the data!")
if use_MMR:
mmr = True
else:
mmr = False
if StopWordsCheckbox:
StopWords = "english"
else:
StopWords = None
if not submit_button:
st.stop()
if min_Ngrams > max_Ngrams:
st.warning("min_Ngrams can't be greater than max_Ngrams")
st.stop()
keywords = kw_model.extract_keywords(
doc,
keyphrase_ngram_range=(min_Ngrams, max_Ngrams),
use_mmr=mmr,
stop_words=StopWords,
top_n=top_N,
diversity=Diversity,
)
st.markdown("## **π Check & download results **")
st.header("")
cs, c1, c2, c3, cLast = st.columns([2, 1.5, 1.5, 1.5, 2])
with c1:
CSVButton2 = download_button(keywords, "Data.csv", "π₯ Download (.csv)")
with c2:
CSVButton2 = download_button(keywords, "Data.txt", "π₯ Download (.txt)")
with c3:
CSVButton2 = download_button(keywords, "Data.json", "π₯ Download (.json)")
st.header("")
df = (
DataFrame(keywords, columns=["Keyword/Keyphrase", "Relevancy"])
.sort_values(by="Relevancy", ascending=False)
.reset_index(drop=True)
)
df.index += 1
# Add styling
cmGreen = sns.light_palette("green", as_cmap=True)
cmRed = sns.light_palette("red", as_cmap=True)
df = df.style.background_gradient(
cmap=cmGreen,
subset=[
"Relevancy",
],
)
c1, c2, c3 = st.columns([1, 3, 1])
format_dictionary = {
"Relevancy": "{:.1%}",
}
df = df.format(format_dictionary)
with c2:
st.table(df)