forked from massich/mne-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchpi.py
1135 lines (972 loc) · 42.5 KB
/
chpi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
"""Functions for fitting head positions with (c)HPI coils."""
# To fit head positions (continuously), the procedure using
# ``_calculate_chpi_positions`` is:
#
# 1. Get HPI coil locations (as digitized in info['dig'] in head coords
# using ``_get_hpi_initial_fit``.
# 2. Get HPI frequencies, HPI status channel, HPI status bits,
# and digitization order using ``_setup_hpi_struct``.
# 3. Map HPI coil locations into device coords and compute coil to coil
# distances.
# 4. Window data using ``t_window`` (half before and half after ``t``) and
# ``t_step_min``.
# (Here Elekta high-passes the data, but we omit this step.)
# 5. Use a linear model (DC + linear slope + sin + cos terms set up
# in ``_setup_hpi_struct``) to fit sinusoidal amplitudes to MEG
# channels. Use SVD to determine the phase/amplitude of the sinusoids.
# This step is accomplished using ``_fit_cHPI_amplitudes``
# 6. If the amplitudes are 98% correlated with last position
# (and Δt < t_step_max), skip fitting.
# 7. Fit magnetic dipoles using the amplitudes for each coil frequency
# (calling ``_fit_magnetic_dipole``).
# 8. If ``use_distances is True`` choose good coils based on pairwise
# distances, taking into account the tolerance ``dist_limit``.
# 9. Fit dev_head_t quaternion (using ``_fit_chpi_quat``).
# 10. Accept or reject fit based on GOF threshold ``gof_limit``.
#
# The function ``filter_chpi`` uses the same linear model to filter cHPI
# and (optionally) line frequencies from the data.
# Authors: Eric Larson <[email protected]>
#
# License: BSD (3-clause)
from functools import partial
import numpy as np
from scipy import linalg
import itertools
from .io.pick import pick_types, pick_channels, pick_channels_regexp
from .io.constants import FIFF
from .io.ctf.trans import _make_ctf_coord_trans_set
from .forward import (_magnetic_dipole_field_vec, _create_meg_coils,
_concatenate_coils)
from .cov import make_ad_hoc_cov, compute_whitener
from .transforms import (apply_trans, invert_transform, _angle_between_quats,
quat_to_rot, rot_to_quat)
from .utils import (verbose, logger, use_log_level, _check_fname, warn,
_check_option)
# Eventually we should add:
# hpicons
# high-passing of data during fits
# parsing cHPI coil information from acq pars, then to PSD if necessary
# ############################################################################
# Reading from text or FIF file
def read_head_pos(fname):
"""Read MaxFilter-formatted head position parameters.
Parameters
----------
fname : str
The filename to read. This can be produced by e.g.,
``maxfilter -headpos <name>.pos``.
Returns
-------
pos : array, shape (N, 10)
The position and quaternion parameters from cHPI fitting.
See Also
--------
write_head_pos
head_pos_to_trans_rot_t
Notes
-----
.. versionadded:: 0.12
"""
_check_fname(fname, must_exist=True, overwrite='read')
data = np.loadtxt(fname, skiprows=1) # first line is header, skip it
data.shape = (-1, 10) # ensure it's the right size even if empty
if np.isnan(data).any(): # make sure we didn't do something dumb
raise RuntimeError('positions could not be read properly from %s'
% fname)
return data
def write_head_pos(fname, pos):
"""Write MaxFilter-formatted head position parameters.
Parameters
----------
fname : str
The filename to write.
pos : array, shape (N, 10)
The position and quaternion parameters from cHPI fitting.
See Also
--------
read_head_pos
head_pos_to_trans_rot_t
Notes
-----
.. versionadded:: 0.12
"""
_check_fname(fname, overwrite=True)
pos = np.array(pos, np.float64)
if pos.ndim != 2 or pos.shape[1] != 10:
raise ValueError('pos must be a 2D array of shape (N, 10)')
with open(fname, 'wb') as fid:
fid.write(' Time q1 q2 q3 q4 q5 '
'q6 g-value error velocity\n'.encode('ASCII'))
for p in pos:
fmts = ['% 9.3f'] + ['% 8.5f'] * 9
fid.write(((' ' + ' '.join(fmts) + '\n')
% tuple(p)).encode('ASCII'))
def head_pos_to_trans_rot_t(quats):
"""Convert Maxfilter-formatted head position quaternions.
Parameters
----------
quats : ndarray, shape (N, 10)
MaxFilter-formatted position and quaternion parameters.
Returns
-------
translation : ndarray, shape (N, 3)
Translations at each time point.
rotation : ndarray, shape (N, 3, 3)
Rotations at each time point.
t : ndarray, shape (N,)
The time points.
See Also
--------
read_head_pos
write_head_pos
"""
t = quats[..., 0].copy()
rotation = quat_to_rot(quats[..., 1:4])
translation = quats[..., 4:7].copy()
return translation, rotation, t
def _apply_quat(quat, pts, move=True):
"""Apply MaxFilter-formatted head position parameters to points."""
trans = np.concatenate(
(quat_to_rot(quat[:3]),
quat[3:][:, np.newaxis]), axis=1)
return(apply_trans(trans, pts, move=move))
def _calculate_head_pos_ctf(raw, gof_limit=0.98):
r"""Extract head position parameters from ctf dataset.
Parameters
----------
raw : instance of raw
Raw data with cHPI information. HLC00 channels
gof_limit : float
Minimum goodness of fit to accept.
Returns
-------
pos : array, shape (N, 10)
The position and quaternion parameters from cHPI fitting.
Notes
-----
CTF continuous head monitoring stores the x,y,z location (m) of each chpi
coil as separate channels in the dataset.
HLC001[123]\\* - nasion
HLC002[123]\\* - lpa
HLC003[123]\\* - rpa
"""
# Pick channels cooresponding to the cHPI positions
hpi_picks = pick_channels_regexp(raw.info['ch_names'],
'HLC00[123][123].*')
# make sure we get 9 channels
if len(hpi_picks) != 9:
raise RuntimeError('Could not find all 9 cHPI channels')
# get indices in alphabetical order
sorted_picks = np.array(sorted(hpi_picks,
key=lambda k: raw.info['ch_names'][k]))
# make picks to match order of dig cardinial ident codes.
# LPA (HPIC002[123]-*), NAS(HPIC001[123]-*), RPA(HPIC003[123]-*)
hpi_picks = sorted_picks[[3, 4, 5, 0, 1, 2, 6, 7, 8]]
del sorted_picks
# process the entire run
time_sl = slice(0, len(raw.times))
chpi_data = raw[hpi_picks, time_sl][0]
# grab initial cHPI locations
# point sorted in hpi_results are in mne device coords
chpi_locs_dev = sorted([d for d in raw.info['hpi_results'][-1]
['dig_points']], key=lambda x: x['ident'])
chpi_locs_dev = np.array([d['r'] for d in chpi_locs_dev])
# transforms
dev_head_t = raw.info['dev_head_t']
tmp_trans = _make_ctf_coord_trans_set(None, None)
ctf_dev_dev_t = tmp_trans['t_ctf_dev_dev']
del tmp_trans
# move to head coords
chpi_locs_head = apply_trans(dev_head_t, chpi_locs_dev)
# find indices where chpi locations change
indices = [0]
indices.extend(np.where(np.all(chpi_data[:, :-1] != chpi_data[:, 1:],
axis=0))[0] + 1)
# initialized quaternion
last_quat = np.concatenate([rot_to_quat(dev_head_t['trans'][:3, :3]),
dev_head_t['trans'][:3, 3]])
quats = []
for idx in indices:
# data in channels are in ctf device coordinates (cm)
this_ctf_dev = chpi_data[:, idx].reshape(3, 3) # m
# map to mne device coords
this_dev = apply_trans(ctf_dev_dev_t, this_ctf_dev)
# fit quaternion
this_quat, g = _fit_chpi_quat(this_dev, chpi_locs_head, last_quat)
if g < gof_limit:
raise RuntimeError('Bad coil fit! (g=%7.3f)' % (g,))
if (idx > 0):
dt = float(raw.times[idx] - raw.times[idx - 1])
else:
dt = 0.001
this_locs_head = _apply_quat(this_quat, this_dev, move=True)
errs = 1000. * np.sqrt(((chpi_locs_head -
this_locs_head) ** 2).sum(axis=-1))
e = errs.mean() / 1000. # mm -> m
d = 100 * np.sqrt(np.sum(last_quat[3:] - this_quat[3:]) ** 2) # cm
v = d / dt # cm/sec
quats.append(np.concatenate(([raw.times[idx]], this_quat, [g],
[e * 100], [v]))) # e in centimeters
last_quat = this_quat
quats = np.array(quats, np.float64)
quats = np.zeros((0, 10)) if quats.size == 0 else quats
quats[:, 0] += raw._first_time
return quats
# ############################################################################
# Estimate positions from data
@verbose
def _get_hpi_info(info, verbose=None):
"""Get HPI information from raw."""
if len(info['hpi_meas']) == 0 or \
('coil_freq' not in info['hpi_meas'][0]['hpi_coils'][0]):
raise RuntimeError('Appropriate cHPI information not found in'
'info["hpi_meas"] and info["hpi_subsystem"], '
'cannot process cHPI')
hpi_coils = sorted(info['hpi_meas'][-1]['hpi_coils'],
key=lambda x: x['number']) # ascending (info) order
# get frequencies
hpi_freqs = np.array([float(x['coil_freq']) for x in hpi_coils])
logger.info('Using %s HPI coils: %s Hz'
% (len(hpi_freqs), ' '.join(str(int(s)) for s in hpi_freqs)))
# how cHPI active is indicated in the FIF file
hpi_sub = info['hpi_subsystem']
hpi_pick = None # there is no pick!
if hpi_sub is not None:
if 'event_channel' in hpi_sub:
hpi_pick = pick_channels(info['ch_names'],
[hpi_sub['event_channel']])
hpi_pick = hpi_pick[0] if len(hpi_pick) > 0 else None
# grab codes indicating a coil is active
hpi_on = [coil['event_bits'][0] for coil in hpi_sub['hpi_coils']]
# not all HPI coils will actually be used
hpi_on = np.array([hpi_on[hc['number'] - 1] for hc in hpi_coils])
# mask for coils that may be active
hpi_mask = np.array([event_bit != 0 for event_bit in hpi_on])
hpi_on = hpi_on[hpi_mask]
hpi_freqs = hpi_freqs[hpi_mask]
else:
hpi_on = np.zeros(len(hpi_freqs))
return hpi_freqs, hpi_pick, hpi_on
@verbose
def _get_hpi_initial_fit(info, adjust=False, verbose=None):
"""Get HPI fit locations from raw."""
if info['hpi_results'] is None:
raise RuntimeError('no initial cHPI head localization performed')
hpi_result = info['hpi_results'][-1]
hpi_coils = sorted(info['hpi_meas'][-1]['hpi_coils'],
key=lambda x: x['number']) # ascending (info) order
hpi_dig = sorted([d for d in info['dig']
if d['kind'] == FIFF.FIFFV_POINT_HPI],
key=lambda x: x['ident']) # ascending (dig) order
pos_order = hpi_result['order'] - 1 # zero-based indexing, dig->info
# this shouldn't happen, eventually we could add the transforms
# necessary to put it in head coords
if not all(d['coord_frame'] == FIFF.FIFFV_COORD_HEAD for d in hpi_dig):
raise RuntimeError('cHPI coordinate frame incorrect')
# Give the user some info
logger.info('HPIFIT: %s coils digitized in order %s'
% (len(pos_order), ' '.join(str(o + 1) for o in pos_order)))
logger.debug('HPIFIT: %s coils accepted: %s'
% (len(hpi_result['used']),
' '.join(str(h) for h in hpi_result['used'])))
hpi_rrs = np.array([d['r'] for d in hpi_dig])[pos_order]
# Fitting errors
hpi_rrs_fit = sorted([d for d in info['hpi_results'][-1]['dig_points']],
key=lambda x: x['ident'])
hpi_rrs_fit = np.array([d['r'] for d in hpi_rrs_fit])
# hpi_result['dig_points'] are in FIFFV_COORD_UNKNOWN coords, but this
# is probably a misnomer because it should be FIFFV_COORD_DEVICE for this
# to work
assert hpi_result['coord_trans']['to'] == FIFF.FIFFV_COORD_HEAD
hpi_rrs_fit = apply_trans(hpi_result['coord_trans']['trans'], hpi_rrs_fit)
if 'moments' in hpi_result:
logger.debug('Hpi coil moments (%d %d):'
% hpi_result['moments'].shape[::-1])
for moment in hpi_result['moments']:
logger.debug("%g %g %g" % tuple(moment))
errors = np.sqrt(((hpi_rrs - hpi_rrs_fit) ** 2).sum(axis=1))
logger.debug('HPIFIT errors: %s mm.'
% ', '.join('%0.1f' % (1000. * e) for e in errors))
if errors.sum() < len(errors) * hpi_result['dist_limit']:
logger.info('HPI consistency of isotrak and hpifit is OK.')
elif not adjust and (len(hpi_result['used']) == len(hpi_coils)):
warn('HPI consistency of isotrak and hpifit is poor.')
else:
# adjust HPI coil locations using the hpifit transformation
for hi, (r_dig, r_fit) in enumerate(zip(hpi_rrs, hpi_rrs_fit)):
# transform to head frame
d = 1000 * np.sqrt(((r_dig - r_fit) ** 2).sum())
if not adjust:
warn('Discrepancy of HPI coil %d isotrak and hpifit is %.1f '
'mm!' % (hi + 1, d))
elif hi + 1 not in hpi_result['used']:
if hpi_result['goodness'][hi] >= hpi_result['good_limit']:
logger.info('Note: HPI coil %d isotrak is adjusted by '
'%.1f mm!' % (hi + 1, d))
hpi_rrs[hi] = r_fit
else:
warn('Discrepancy of HPI coil %d isotrak and hpifit of '
'%.1f mm was not adjusted!' % (hi + 1, d))
logger.debug('HP fitting limits: err = %.1f mm, gval = %.3f.'
% (1000 * hpi_result['dist_limit'], hpi_result['good_limit']))
return hpi_rrs
def _magnetic_dipole_objective(x, B, B2, coils, scale, method, too_close):
"""Project data onto right eigenvectors of whitened forward."""
if method == 'forward':
fwd = _magnetic_dipole_field_vec(x[np.newaxis, :], coils, too_close)
else:
from .preprocessing.maxwell import _sss_basis
# Eventually we can try incorporating external bases here, which
# is why the :3 is on the SVD below
fwd = _sss_basis(dict(origin=x, int_order=1, ext_order=0), coils).T
fwd = np.dot(fwd, scale.T)
one = np.dot(linalg.svd(fwd, full_matrices=False)[2][:3], B)
one *= one
Bm2 = one.sum()
return B2 - Bm2
def _fit_magnetic_dipole(B_orig, x0, coils, scale, method, too_close):
"""Fit a single bit of data (x0 = pos)."""
from scipy.optimize import fmin_cobyla
B = np.dot(scale, B_orig)
B2 = np.dot(B, B)
objective = partial(_magnetic_dipole_objective, B=B, B2=B2,
coils=coils, scale=scale, method=method,
too_close=too_close)
x = fmin_cobyla(objective, x0, (), rhobeg=1e-4, rhoend=1e-5, disp=False)
return x, 1. - objective(x) / B2
def _chpi_objective(x, coil_dev_rrs, coil_head_rrs):
"""Compute objective function."""
d = np.dot(coil_dev_rrs, quat_to_rot(x[:3]).T)
d += x[3:] / 10. # in decimeters to get quats and head units close
d -= coil_head_rrs
d *= d
return d.sum()
def _unit_quat_constraint(x):
"""Constrain our 3 quaternion rot params (ignoring w) to have norm <= 1."""
return 1 - (x * x).sum()
def _fit_chpi_quat(coil_dev_rrs, coil_head_rrs, x0):
"""Fit rotation and translation (quaternion) parameters for cHPI coils."""
from scipy.optimize import fmin_cobyla
denom = np.sum((coil_head_rrs - np.mean(coil_head_rrs, axis=0)) ** 2)
objective = partial(_chpi_objective, coil_dev_rrs=coil_dev_rrs,
coil_head_rrs=coil_head_rrs)
x0 = x0.copy()
x0[3:] *= 10. # decimeters to get quats and head units close
x = fmin_cobyla(objective, x0, _unit_quat_constraint,
rhobeg=1e-3, rhoend=1e-5, disp=False)
result = objective(x)
x[3:] /= 10.
return x, 1. - result / denom
def _fit_coil_order_dev_head_trans(dev_pnts, head_pnts):
"""Compute Device to Head transform allowing for permutiatons of points."""
id_quat = np.concatenate([rot_to_quat(np.eye(3)), [0.0, 0.0, 0.0]])
best_order = None
best_g = -999
best_quat = id_quat
for this_order in itertools.permutations(np.arange(len(head_pnts))):
head_pnts_tmp = head_pnts[np.array(this_order)]
this_quat, g = _fit_chpi_quat(dev_pnts, head_pnts_tmp, id_quat)
if g > best_g:
best_g = g
best_order = np.array(this_order)
best_quat = this_quat
# Convert Quaterion to transform
dev_head_t = np.concatenate(
(quat_to_rot(best_quat[:3]),
best_quat[3:][:, np.newaxis]), axis=1)
dev_head_t = np.concatenate((dev_head_t, [[0, 0, 0, 1.]]))
return dev_head_t, best_order
@verbose
def _setup_hpi_struct(info, model_n_window,
method='forward',
exclude='bads',
remove_aliased=False, verbose=None):
"""Generate HPI structure for HPI localization.
Returns
-------
hpi : dict
Dictionary of parameters representing the cHPI system and needed to
perform head localization.
"""
from .preprocessing.maxwell import _prep_mf_coils
# grab basic info.
hpi_freqs, hpi_pick, hpi_ons = _get_hpi_info(info)
# worry about resampled/filtered data.
# What to do e.g. if Raw has been resampled and some of our
# HPI freqs would now be aliased
highest = info.get('lowpass')
highest = info['sfreq'] / 2. if highest is None else highest
keepers = np.array([h <= highest for h in hpi_freqs], bool)
if remove_aliased:
hpi_freqs = hpi_freqs[keepers]
hpi_ons = hpi_ons[keepers]
elif not keepers.all():
raise RuntimeError('Found HPI frequencies %s above the lowpass '
'(or Nyquist) frequency %0.1f'
% (hpi_freqs[~keepers].tolist(), highest))
if info['line_freq'] is not None:
line_freqs = np.arange(info['line_freq'], info['sfreq'] / 3.,
info['line_freq'])
else:
line_freqs = np.zeros([0])
logger.info('Line interference frequencies: %s Hz'
% ' '.join(['%d' % l for l in line_freqs]))
# build model to extract sinusoidal amplitudes.
slope = np.arange(model_n_window).astype(np.float64)[:, np.newaxis]
slope -= np.mean(slope)
rads = slope / info['sfreq']
rads *= 2 * np.pi
f_t = hpi_freqs[np.newaxis, :] * rads
l_t = line_freqs[np.newaxis, :] * rads
model = [np.sin(f_t), np.cos(f_t)] # hpi freqs
model += [np.sin(l_t), np.cos(l_t)] # line freqs
model += [slope, np.ones(slope.shape)]
model = np.concatenate(model, axis=1)
inv_model = linalg.pinv(model)
# Set up magnetic dipole fits
meg_picks = pick_types(info, meg=True, eeg=False, exclude=exclude)
if len(exclude) > 0:
if exclude == 'bads':
msg = info['bads']
else:
msg = exclude
logger.debug('Static bad channels (%d): %s'
% (len(msg), u' '.join(msg)))
megchs = [ch for ci, ch in enumerate(info['chs']) if ci in meg_picks]
coils = _create_meg_coils(megchs, 'accurate')
if method == 'forward':
coils = _concatenate_coils(coils)
else: # == 'multipole'
coils = _prep_mf_coils(info)
diag_cov = make_ad_hoc_cov(info, verbose=False)
diag_whitener, _ = compute_whitener(diag_cov, info, picks=meg_picks,
verbose=False)
hpi = dict(meg_picks=meg_picks, hpi_pick=hpi_pick,
model=model, inv_model=inv_model,
on=hpi_ons, n_window=model_n_window, method=method,
freqs=hpi_freqs, line_freqs=line_freqs, n_freqs=len(hpi_freqs),
scale=diag_whitener, coils=coils
)
return hpi
def _time_prefix(fit_time):
"""Format log messages."""
return (' t=%0.3f:' % fit_time).ljust(17)
@verbose
def _fit_cHPI_amplitudes(raw, time_sl, hpi, fit_time, verbose=None):
"""Fit amplitudes for each channel from each of the N cHPI sinusoids.
Returns
-------
sin_fit : ndarray, shape (n_freqs, n_channels)) or None :
The sin amplitudes matching each cHPI frequency
or None if this time window should be skipped
"""
# No need to detrend the data because our model has a DC term
with use_log_level(False):
# loads good channels
this_data = raw[hpi['meg_picks'], time_sl][0]
# which HPI coils to use
# other then erroring I don't see this getting used elsewhere?
if hpi['hpi_pick'] is not None:
with use_log_level(False):
# loads hpi_stim channel
chpi_data = raw[hpi['hpi_pick'], time_sl][0]
ons = (np.round(chpi_data).astype(np.int) &
hpi['on'][:, np.newaxis]).astype(bool)
n_on = np.sum(ons, axis=0)
if not (n_on >= 3).all():
logger.info(_time_prefix(fit_time) + '%s < 3 HPI coils turned on, '
'skipping fit' % (n_on.min(),))
return None
# #TODO REMOVE # ons = ons.all(axis=1) # which HPI coils to use
n_freqs = hpi['n_freqs']
this_len = time_sl.stop - time_sl.start
if this_len == hpi['n_window']:
model, inv_model = hpi['model'], hpi['inv_model']
else: # first or last window
model = hpi['model'][:this_len]
inv_model = linalg.pinv(model)
X = np.dot(inv_model, this_data.T)
X_sin, X_cos = X[:n_freqs], X[n_freqs:2 * n_freqs]
# use SVD across all sensors to estimate the sinusoid phase
sin_fit = np.zeros((n_freqs, X_sin.shape[1]))
for fi in range(n_freqs):
u, s, vt = np.linalg.svd(np.vstack((X_sin[fi, :], X_cos[fi, :])),
full_matrices=False)
# the first component holds the predominant phase direction
# (so ignore the second, effectively doing s[1] = 0):
sin_fit[fi, :] = vt[0]
# Do not modify X, however, because it will break the signal
# reconstruction step.
data_diff_sq = np.dot(model, X).T - this_data
data_diff_sq *= data_diff_sq
data_diff_sq = np.sum(data_diff_sq, axis=-1)
# compute amplitude correlation (for logging), protect against zero
norm = this_data
del this_data
norm *= norm
norm = np.sum(norm, axis=-1)
norm_sum = norm.sum()
norm_sum = np.inf if norm_sum == 0 else norm_sum
norm[norm == 0] = np.inf
g_sin = 1 - data_diff_sq.sum() / norm_sum
g_chan = 1 - data_diff_sq / norm
logger.debug(' HPI amplitude correlation %0.3f: %0.3f '
'(%s chnls > 0.95)' % (fit_time, g_sin,
(g_chan > 0.95).sum()))
return sin_fit
@verbose
def _fit_device_hpi_positions(raw, t_win=None, initial_dev_rrs=None,
too_close='raise', verbose=None):
"""Calculate location of HPI coils in device coords for 1 time window.
Parameters
----------
raw : instance of Raw
Raw data with cHPI information.
t_win : list, shape (2)
Time window to fit. If None entire data run is used.
initial_dev_rrs : ndarry, shape (n_CHPI, 3) || None
Initial guess on HPI locations. If None (0,0,0) is used for each hpi.
too_close : str
How to handle HPI positions too close to the sensors,
can be 'raise', 'warning', or 'info'.
%(verbose)s
Returns
-------
coil_dev_rrs : ndarray, shape (n_CHPI, 3)
Fit locations of each cHPI coil in device coordinates
"""
_check_option('too_close', too_close, ['raise', 'warning', 'info'])
# 0. determine samples to fit.
if t_win is None: # use the whole window
i_win = [0, len(raw.times)]
else:
i_win = raw.time_as_index(t_win, use_rounding=True)
# clamp index windows
i_win = [max(i_win[0], 0), min(i_win[1], len(raw.times))]
time_sl = slice(i_win[0], i_win[1])
hpi = _setup_hpi_struct(raw.info, i_win[1] - i_win[0])
if initial_dev_rrs is None:
initial_dev_rrs = []
for i in range(hpi['n_freqs']):
initial_dev_rrs.append([0.0, 0.0, 0.0])
# 1. Fit amplitudes for each channel from each of the N cHPI sinusoids
sin_fit = _fit_cHPI_amplitudes(raw, time_sl, hpi, 0)
# skip this window if it bad.
# logging has already been done! Maybe turn this into an Exception
if sin_fit is None:
return None
# 2. fit each HPI coil if its turned on
outs = [_fit_magnetic_dipole(f, pos, hpi['coils'], hpi['scale'],
hpi['method'], too_close)
for f, pos, on in zip(sin_fit, initial_dev_rrs, hpi['on'])
if on > 0]
coil_dev_rrs = np.array([o[0] for o in outs])
coil_g = np.array([o[0] for o in outs])
return coil_dev_rrs, coil_g
@verbose
def _calculate_chpi_positions(raw, t_step_min=0.1, t_step_max=10.,
t_window=0.2, dist_limit=0.005, gof_limit=0.98,
use_distances=True, too_close='raise',
verbose=None):
"""Calculate head positions using cHPI coils.
Parameters
----------
raw : instance of Raw
Raw data with cHPI information.
t_step_min : float
Minimum time step to use. If correlations are sufficiently high,
t_step_max will be used.
t_step_max : float
Maximum time step to use.
t_window : float
Time window to use to estimate the head positions.
dist_limit : float
Minimum distance (m) to accept for coil position fitting.
gof_limit : float
Minimum goodness of fit to accept.
use_distances : bool
use dist_limit to choose 'good' coils based on pairwise distances.
too_close : str
How to handle HPI positions too close to the sensors,
can be 'raise', 'warning', or 'info'.
%(verbose)s
Returns
-------
quats : ndarray, shape (N, 10)
The ``[t, q1, q2, q3, x, y, z, gof, err, v]`` for each fit.
Notes
-----
The number of time points ``N`` will depend on the velocity of head
movements as well as ``t_step_max`` and ``t_step_min``.
See Also
--------
read_head_pos
write_head_pos
"""
from scipy.spatial.distance import cdist
# extract initial geometry from info['hpi_results']
hpi_dig_head_rrs = _get_hpi_initial_fit(raw.info)
_check_option('too_close', too_close, ['raise', 'warning', 'info'])
# extract hpi system information
hpi = _setup_hpi_struct(raw.info, int(round(t_window * raw.info['sfreq'])))
# move to device coords
dev_head_t = raw.info['dev_head_t']['trans']
head_dev_t = invert_transform(raw.info['dev_head_t'])['trans']
hpi_dig_dev_rrs = apply_trans(head_dev_t, hpi_dig_head_rrs)
# compute initial coil to coil distances
hpi_coil_dists = cdist(hpi_dig_head_rrs, hpi_dig_head_rrs)
# setup last iteration structure
last = dict(sin_fit=None, fit_time=t_step_min,
coil_dev_rrs=hpi_dig_dev_rrs,
quat=np.concatenate([rot_to_quat(dev_head_t[:3, :3]),
dev_head_t[:3, 3]]))
t_begin = raw.times[0]
t_end = raw.times[-1]
fit_idxs = raw.time_as_index(np.arange(t_begin + t_window / 2., t_end,
t_step_min),
use_rounding=True)
quats = []
logger.info('Fitting up to %s time points (%0.1f sec duration)'
% (len(fit_idxs), t_end - t_begin))
pos_0 = None
hpi['n_freqs'] = len(hpi['freqs'])
for midpt in fit_idxs:
#
# 0. determine samples to fit.
#
fit_time = (midpt + raw.first_samp - hpi['n_window'] / 2.) /\
raw.info['sfreq']
time_sl = midpt - hpi['n_window'] // 2
time_sl = slice(max(time_sl, 0),
min(time_sl + hpi['n_window'], len(raw.times)))
#
# 1. Fit amplitudes for each channel from each of the N cHPI sinusoids
#
sin_fit = _fit_cHPI_amplitudes(raw, time_sl, hpi, fit_time)
# skip this window if bad
# logging has already been done! Maybe turn this into an Exception
if sin_fit is None:
continue
# check if data has sufficiently changed
if last['sin_fit'] is not None: # first iteration
# The sign of our fits is arbitrary
flips = np.sign((sin_fit * last['sin_fit']).sum(-1, keepdims=True))
sin_fit *= flips
corr = np.corrcoef(sin_fit.ravel(), last['sin_fit'].ravel())[0, 1]
# check to see if we need to continue
if fit_time - last['fit_time'] <= t_step_max - 1e-7 and \
corr * corr > 0.98:
# don't need to refit data
continue
# update 'last' sin_fit *before* inplace sign mult
last['sin_fit'] = sin_fit.copy()
#
# 2. Fit magnetic dipole for each coil to obtain coil positions
# in device coordinates
#
outs = [_fit_magnetic_dipole(f, pos, hpi['coils'], hpi['scale'],
hpi['method'], too_close)
for f, pos in zip(sin_fit, last['coil_dev_rrs'])]
this_coil_dev_rrs = np.array([o[0] for o in outs])
g_coils = [o[1] for o in outs]
# filter coil fits based on the correspodnace to digitization geometry
use_mask = np.ones(hpi['n_freqs'], bool)
if use_distances:
these_dists = cdist(this_coil_dev_rrs, this_coil_dev_rrs)
these_dists = np.abs(hpi_coil_dists - these_dists)
# there is probably a better algorithm for finding the bad ones...
good = False
while not good:
d = these_dists[use_mask][:, use_mask]
d_bad = (d > dist_limit)
good = not d_bad.any()
if not good:
if use_mask.sum() == 2:
use_mask[:] = False
break # failure
# exclude next worst point
badness = (d * d_bad).sum(axis=0)
exclude_coils = np.where(use_mask)[0][np.argmax(badness)]
use_mask[exclude_coils] = False
good = use_mask.sum() >= 3
if not good:
warn(_time_prefix(fit_time) + '%s/%s good HPI fits, '
'cannot determine the transformation!'
% (use_mask.sum(), hpi['n_freqs']))
continue
#
# 3. Fit the head translation and rotation params (minimize error
# between coil positions and the head coil digitization positions)
#
this_quat, g = _fit_chpi_quat(this_coil_dev_rrs[use_mask],
hpi_dig_head_rrs[use_mask],
last['quat'])
if g < gof_limit:
logger.info(_time_prefix(fit_time) +
'Bad coil fit! (g=%7.3f)' % (g,))
continue
# Convert quaterion to transform
this_dev_head_t = np.concatenate(
(quat_to_rot(this_quat[:3]),
this_quat[3:][:, np.newaxis]), axis=1)
this_dev_head_t = np.concatenate((this_dev_head_t, [[0, 0, 0, 1.]]))
# velocities, in device coords, of HPI coils
# dt = fit_time - last['fit_time'] #
dt = t_window
vs = tuple(1000. * np.sqrt(np.sum((last['coil_dev_rrs'] -
this_coil_dev_rrs) ** 2,
axis=1)) / dt)
logger.info(_time_prefix(fit_time) +
('%s/%s good HPI fits, movements [mm/s] = ' +
' / '.join(['% 6.1f'] * hpi['n_freqs']))
% ((use_mask.sum(), hpi['n_freqs']) + vs))
# resulting errors in head coil positions
est_coil_head_rrs = apply_trans(this_dev_head_t, this_coil_dev_rrs)
errs = 1000. * np.sqrt(((hpi_dig_head_rrs -
est_coil_head_rrs) ** 2).sum(axis=-1))
e = errs[use_mask].mean() / 1000. # mm -> m
d = 100 * np.sqrt(np.sum(last['quat'][3:] - this_quat[3:]) ** 2) # cm
r = _angle_between_quats(last['quat'][:3], this_quat[:3]) / dt
v = d / dt # cm/sec
if pos_0 is None:
pos_0 = this_quat[3:].copy()
d = 100 * np.sqrt(np.sum((this_quat[3:] - pos_0) ** 2)) # dis from 1st
# MaxFilter averages over a 200 ms window for display, but we don't
for ii in range(hpi['n_freqs']):
if use_mask[ii]:
start, end = ' ', '/'
else:
start, end = '(', ')'
log_str = (' ' + start +
'{0:6.1f} {1:6.1f} {2:6.1f} / ' +
'{3:6.1f} {4:6.1f} {5:6.1f} / ' +
'g = {6:0.3f} err = {7:4.1f} ' +
end)
if ii <= 2:
log_str += '{8:6.3f} {9:6.3f} {10:6.3f}'
elif ii == 3:
log_str += '{8:6.1f} {9:6.1f} {10:6.1f}'
vals = np.concatenate((1000 * hpi_dig_head_rrs[ii],
1000 * est_coil_head_rrs[ii],
[g_coils[ii], errs[ii]])) # errs in mm
if ii <= 2:
vals = np.concatenate((vals, this_dev_head_t[ii, :3]))
elif ii == 3:
vals = np.concatenate((vals, this_dev_head_t[:3, 3] * 1000.))
logger.debug(log_str.format(*vals))
logger.debug(' #t = %0.3f, #e = %0.2f cm, #g = %0.3f, '
'#v = %0.2f cm/s, #r = %0.2f rad/s, #d = %0.2f cm'
% (fit_time, 100 * e, g, v, r, d))
logger.debug(' #t = %0.3f, #q = %s '
% (fit_time, ' '.join(map('{:8.5f}'.format, this_quat))))
quats.append(np.concatenate(([fit_time], this_quat, [g],
[e * 100], [v]))) # e in centimeters
last['fit_time'] = fit_time
last['quat'] = this_quat
last['coil_dev_rrs'] = this_coil_dev_rrs
logger.info('[done]')
quats = np.array(quats, np.float64)
quats = np.zeros((0, 10)) if quats.size == 0 else quats
return quats
@verbose
def _calculate_chpi_coil_locs(raw, t_step_min=0.1, t_step_max=10.,
t_window=0.2, dist_limit=0.005, gof_limit=0.98,
too_close='raise', verbose=None):
"""Calculate locations of each cHPI coils over time.
Parameters
----------
raw : instance of Raw
Raw data with cHPI information.
t_step_min : float
Minimum time step to use. If correlations are sufficiently high,
t_step_max will be used.
t_step_max : float
Maximum time step to use.
t_window : float
Time window to use to estimate the head positions.
dist_limit : float
Minimum distance (m) to accept for coil position fitting.
gof_limit : float
Minimum goodness of fit to accept.
too_close : str
How to handle HPI positions too close to the sensors,
can be 'raise', 'warning', or 'info'.
%(verbose)s
Returns
-------
time : ndarray, shape (N, 1)
The start time of each fitting interval
chpi_digs :ndarray, shape (N, 1)
Array of dig structures containing the cHPI locations. Includes
goodness of fit for each cHPI.
Notes
-----
The number of time points ``N`` will depend on the velocity of head
movements as well as ``t_step_max`` and ``t_step_min``.
See Also
--------
read_head_pos
write_head_pos
"""
_check_option('too_close', too_close, ['raise', 'warning', 'info'])
# extract initial geometry from info['hpi_results']
hpi_dig_head_rrs = _get_hpi_initial_fit(raw.info)
# extract hpi system information
hpi = _setup_hpi_struct(raw.info, int(round(t_window * raw.info['sfreq'])))
# move to device coords
head_dev_t = invert_transform(raw.info['dev_head_t'])['trans']
hpi_dig_dev_rrs = apply_trans(head_dev_t, hpi_dig_head_rrs)
# setup last iteration structure
last = dict(sin_fit=None, fit_time=t_step_min,
coil_dev_rrs=hpi_dig_dev_rrs)
t_begin = raw.times[0]
t_end = raw.times[-1]
fit_idxs = raw.time_as_index(np.arange(t_begin + t_window / 2., t_end,
t_step_min),
use_rounding=True)
times = []
chpi_digs = []
logger.info('Fitting up to %s time points (%0.1f sec duration)'
% (len(fit_idxs), t_end - t_begin))
hpi['n_freqs'] = len(hpi['freqs'])
for midpt in fit_idxs:
#
# 0. determine samples to fit.
#
fit_time = (midpt + raw.first_samp - hpi['n_window'] / 2.) /\
raw.info['sfreq']
time_sl = midpt - hpi['n_window'] // 2
time_sl = slice(max(time_sl, 0),
min(time_sl + hpi['n_window'], len(raw.times)))
#
# 1. Fit amplitudes for each channel from each of the N cHPI sinusoids
#
sin_fit = _fit_cHPI_amplitudes(raw, time_sl, hpi, fit_time)
# skip this window if bad
# logging has already been done! Maybe turn this into an Exception
if sin_fit is None:
continue
# check if data has sufficiently changed
if last['sin_fit'] is not None: # first iteration
corr = np.corrcoef(sin_fit.ravel(), last['sin_fit'].ravel())[0, 1]
# check to see if we need to continue