forked from RfidResearchGroup/proxmark3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmifaresniff_disabled.c
327 lines (286 loc) · 11.5 KB
/
mifaresniff_disabled.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
//-----------------------------------------------------------------------------
// Merlok - 2012
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Routines to support mifare classic sniffer.
//-----------------------------------------------------------------------------
#include "mifaresniff_disabled.h"
#ifndef CheckCrc14A
# define CheckCrc14A(data, len) check_crc(CRC_14443_A, (data), (len))
#endif
//static int sniffState = SNF_INIT;
static uint8_t sniffUIDType = 0;
static uint8_t sniffUID[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
static uint8_t sniffATQA[2] = {0, 0};
static uint8_t sniffSAK = 0;
static uint8_t sniffBuf[17];
static uint32_t timerData = 0;
//-----------------------------------------------------------------------------
// MIFARE sniffer.
//
// if no activity for 2sec, it sends the collected data to the client.
//-----------------------------------------------------------------------------
// "hf mf sniff"
void RAMFUNC SniffMifare(uint8_t param) {
// param:
// bit 0 - trigger from first card answer
// bit 1 - trigger from first reader 7-bit request
// C(red) A(yellow) B(green)
LEDsoff();
iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
// Allocate memory from BigBuf for some buffers
// free all previous allocations first
BigBuf_free();
BigBuf_Clear_ext(false);
clear_trace();
set_tracing(true);
// The command (reader -> tag) that we're receiving.
uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE] = {0x00};
uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE] = {0x00};
// The response (tag -> reader) that we're receiving.
uint8_t receivedResp[MAX_MIFARE_FRAME_SIZE] = {0x00};
uint8_t receivedRespPar[MAX_MIFARE_PARITY_SIZE] = {0x00};
// allocate the DMA buffer, used to stream samples from the FPGA
uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
uint8_t *data = dmaBuf;
uint8_t previous_data = 0;
int dataLen, maxDataLen = 0;
bool ReaderIsActive = false;
bool TagIsActive = false;
// We won't start recording the frames that we acquire until we trigger;
// a good trigger condition to get started is probably when we see a
// response from the tag.
// triggered == false -- to wait first for card
//bool triggered = !(param & 0x03);
// Set up the demodulator for tag -> reader responses.
Demod14aInit(receivedResp, receivedRespPar);
// Set up the demodulator for the reader -> tag commands
Uart14aInit(receivedCmd, receivedCmdPar);
// Setup and start DMA.
// set transfer address and number of bytes. Start transfer.
if (!FpgaSetupSscDma(dmaBuf, DMA_BUFFER_SIZE)) {
if (g_dbglevel > 1) Dbprintf("[!] FpgaSetupSscDma failed. Exiting");
return;
}
tUart14a *uart = GetUart14a();
tDemod14a *demod = GetDemod14a();
MfSniffInit();
uint32_t sniffCounter = 0;
// loop and listen
while (!BUTTON_PRESS()) {
WDT_HIT();
LED_A_ON();
/*
if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
// check if a transaction is completed (timeout after 2000ms).
// if yes, stop the DMA transfer and send what we have so far to the client
if (BigBuf_get_traceLen()) {
MfSniffSend();
// Reset everything - we missed some sniffed data anyway while the DMA was stopped
sniffCounter = 0;
dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
data = dmaBuf;
maxDataLen = 0;
ReaderIsActive = false;
TagIsActive = false;
FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
}
}
*/
// number of bytes we have processed so far
int register readBufDataP = data - dmaBuf;
// number of bytes already transferred
int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
if (readBufDataP <= dmaBufDataP) // we are processing the same block of data which is currently being transferred
dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
else
dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
// test for length of buffer
if (dataLen > maxDataLen) { // we are more behind than ever...
maxDataLen = dataLen;
if (dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
Dbprintf("[!] blew circular buffer! | datalen %u", dataLen);
break;
}
}
if (dataLen < 1) continue;
// primary buffer was stopped ( <-- we lost data!
if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t)dmaBuf;
AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
Dbprintf("[-] RxEmpty ERROR | data length %d", dataLen); // temporary
}
// secondary buffer sets as primary, secondary buffer was stopped
if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t)dmaBuf;
AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
}
LED_A_OFF();
// Need two samples to feed Miller and Manchester-Decoder
if (sniffCounter & 0x01) {
// no need to try decoding tag data if the reader is sending
if (!TagIsActive) {
uint8_t readerbyte = (previous_data & 0xF0) | (*data >> 4);
if (MillerDecoding(readerbyte, (sniffCounter - 1) * 4)) {
LogTrace(receivedCmd, uart->len, 0, 0, NULL, true);
Demod14aReset();
Uart14aReset();
}
ReaderIsActive = (uart->state != STATE_14A_UNSYNCD);
}
// no need to try decoding tag data if the reader is sending
if (!ReaderIsActive) {
uint8_t tagbyte = (previous_data << 4) | (*data & 0x0F);
if (ManchesterDecoding(tagbyte, 0, (sniffCounter - 1) * 4)) {
LogTrace(receivedResp, demod->len, 0, 0, NULL, false);
Demod14aReset();
Uart14aReset();
}
TagIsActive = (demod->state != DEMOD_14A_UNSYNCD);
}
}
previous_data = *data;
sniffCounter++;
data++;
if (data == dmaBuf + DMA_BUFFER_SIZE)
data = dmaBuf;
} // main cycle
MfSniffEnd();
switch_off();
}
void MfSniffInit(void) {
memset(sniffUID, 0x00, sizeof(sniffUID));
memset(sniffATQA, 0x00, sizeof(sniffATQA));
memset(sniffBuf, 0x00, sizeof(sniffBuf));
sniffSAK = 0;
sniffUIDType = SNF_UID_4;
timerData = 0;
}
void MfSniffEnd(void) {
LED_B_ON();
reply_old(CMD_ACK, 0, 0, 0, 0, 0);
LED_B_OFF();
}
/*
bool RAMFUNC MfSniffLogic(const uint8_t *data, uint16_t len, uint8_t *parity, uint16_t bitCnt, bool reader) {
// reset on 7-Bit commands from reader
if (reader && (len == 1) && (bitCnt == 7)) {
sniffState = SNF_INIT;
}
switch (sniffState) {
case SNF_INIT:{
// REQA,WUPA or MAGICWUP from reader
if ((len == 1) && (reader) && (bitCnt == 7) ) {
MfSniffInit();
sniffState = (data[0] == MIFARE_MAGICWUPC1) ? SNF_MAGIC_WUPC2 : SNF_ATQA;
}
break;
}
case SNF_MAGIC_WUPC2: {
if ((len == 1) && (reader) && (data[0] == MIFARE_MAGICWUPC2) ) {
sniffState = SNF_CARD_IDLE;
}
break;
}
case SNF_ATQA:{
// ATQA from tag
if ((!reader) && (len == 2)) {
sniffATQA[0] = data[0];
sniffATQA[1] = data[1];
sniffState = SNF_UID;
}
break;
}
case SNF_UID: {
if ( !reader ) break;
if ( len != 9 ) break;
if ( !CheckCrc14A(data, 9)) break;
if ( data[1] != 0x70 ) break;
Dbprintf("[!] UID | %x", data[0]);
if ((data[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT)) {
// UID_4 - select 4 Byte UID from reader
memcpy(sniffUID, data+2, 4);
sniffUIDType = SNF_UID_4;
sniffState = SNF_SAK;
} else if ((data[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2)) {
// UID_7 - Select 2nd part of 7 Byte UID
// get rid of 0x88
sniffUID[0] = sniffUID[1];
sniffUID[1] = sniffUID[2];
sniffUID[2] = sniffUID[3];
//new uid bytes
memcpy(sniffUID+3, data+2, 4);
sniffUIDType = SNF_UID_7;
sniffState = SNF_SAK;
} else if ((data[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3)) {
// UID_10 - Select 3nd part of 10 Byte UID
// 3+3+4 = 10.
// get ride of previous 0x88
sniffUID[3] = sniffUID[4];
sniffUID[4] = sniffUID[5];
sniffUID[5] = sniffUID[6];
// new uid bytes
memcpy(sniffUID+6, data+2, 4);
sniffUIDType = SNF_UID_10;
sniffState = SNF_SAK;
}
break;
}
case SNF_SAK:{
// SAK from card?
if ((!reader) && (len == 3) && (CheckCrc14A(data, 3))) {
sniffSAK = data[0];
// CL2 UID part to be expected
if (( sniffSAK == 0x04) && (sniffUIDType == SNF_UID_4)) {
sniffState = SNF_UID;
// CL3 UID part to be expected
} else if ((sniffSAK == 0x04) && (sniffUIDType == SNF_UID_7)) {
sniffState = SNF_UID;
} else {
// select completed
sniffState = SNF_CARD_IDLE;
}
}
break;
}
case SNF_CARD_IDLE:{ // trace the card select sequence
sniffBuf[0] = 0xFF;
sniffBuf[1] = 0xFF;
memcpy(sniffBuf + 2, sniffUID, sizeof(sniffUID));
memcpy(sniffBuf + 12, sniffATQA, sizeof(sniffATQA));
sniffBuf[14] = sniffSAK;
sniffBuf[15] = 0xFF;
sniffBuf[16] = 0xFF;
LogTrace(sniffBuf, sizeof(sniffBuf), 0, 0, NULL, true);
sniffState = SNF_CARD_CMD;
} // intentionally no break;
case SNF_CARD_CMD:{
LogTrace(data, len, 0, 0, NULL, reader);
timerData = GetTickCount();
break;
}
default:
sniffState = SNF_INIT;
break;
}
return false;
}
*/
void RAMFUNC MfSniffSend(void) {
uint16_t tracelen = BigBuf_get_traceLen();
int packlen = tracelen; // total number of bytes to send
uint8_t *data = BigBuf_get_addr();
while (packlen > 0) {
LED_B_ON();
uint16_t chunksize = MIN(PM3_CMD_DATA_SIZE, packlen); // chunk size 512
reply_old(CMD_ACK, 1, tracelen, chunksize, data + tracelen - packlen, chunksize);
packlen -= chunksize;
LED_B_OFF();
}
LED_B_ON();
reply_old(CMD_ACK, 2, 0, 0, 0, 0); // 2 == data transfer finished.
LED_B_OFF();
}