forked from naoto0804/pytorch-AdaIN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
138 lines (111 loc) · 4.49 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import argparse
import os
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.utils.data as data
from PIL import Image
from PIL import ImageFile
from tensorboardX import SummaryWriter
from torchvision import transforms
from tqdm import tqdm
import net
from sampler import InfiniteSamplerWrapper
cudnn.benchmark = True
Image.MAX_IMAGE_PIXELS = None # Disable DecompressionBombError
ImageFile.LOAD_TRUNCATED_IMAGES = True # Disable OSError: image file is truncated
def train_transform():
transform_list = [
transforms.Resize(size=(512, 512)),
transforms.RandomCrop(256),
transforms.ToTensor()
]
return transforms.Compose(transform_list)
class FlatFolderDataset(data.Dataset):
def __init__(self, root, transform):
super(FlatFolderDataset, self).__init__()
self.root = root
self.paths = os.listdir(self.root)
self.transform = transform
def __getitem__(self, index):
path = self.paths[index]
img = Image.open(os.path.join(self.root, path)).convert('RGB')
img = self.transform(img)
return img
def __len__(self):
return len(self.paths)
def name(self):
return 'FlatFolderDataset'
def adjust_learning_rate(optimizer, iteration_count):
"""Imitating the original implementation"""
lr = args.lr / (1.0 + args.lr_decay * iteration_count)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
parser = argparse.ArgumentParser()
# Basic options
parser.add_argument('--content_dir', type=str, required=True,
help='Directory path to a batch of content images')
parser.add_argument('--style_dir', type=str, required=True,
help='Directory path to a batch of style images')
parser.add_argument('--vgg', type=str, default='models/vgg_normalised.pth')
# training options
parser.add_argument('--save_dir', default='./experiments',
help='Directory to save the model')
parser.add_argument('--log_dir', default='./logs',
help='Directory to save the log')
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument('--lr_decay', type=float, default=5e-5)
parser.add_argument('--max_iter', type=int, default=160000)
parser.add_argument('--batch_size', type=int, default=8)
parser.add_argument('--style_weight', type=float, default=1.0)
parser.add_argument('--content_weight', type=float, default=1.0)
parser.add_argument('--n_threads', type=int, default=16)
parser.add_argument('--save_model_interval', type=int, default=10000)
args = parser.parse_args()
device = torch.device('cuda')
if not os.path.exists(args.save_dir):
os.mkdir(args.save_dir)
if not os.path.exists(args.log_dir):
os.mkdir(args.log_dir)
writer = SummaryWriter(log_dir=args.log_dir)
decoder = net.decoder
vgg = net.vgg
vgg.load_state_dict(torch.load(args.vgg))
vgg = nn.Sequential(*list(vgg.children())[:31])
network = net.Net(vgg, decoder)
network.train()
network.to(device)
content_tf = train_transform()
style_tf = train_transform()
content_dataset = FlatFolderDataset(args.content_dir, content_tf)
style_dataset = FlatFolderDataset(args.style_dir, style_tf)
content_iter = iter(data.DataLoader(
content_dataset, batch_size=args.batch_size,
sampler=InfiniteSamplerWrapper(content_dataset),
num_workers=args.n_threads))
style_iter = iter(data.DataLoader(
style_dataset, batch_size=args.batch_size,
sampler=InfiniteSamplerWrapper(style_dataset),
num_workers=args.n_threads))
optimizer = torch.optim.Adam(network.decoder.parameters(), lr=args.lr)
for i in tqdm(range(args.max_iter)):
adjust_learning_rate(optimizer, iteration_count=i)
content_images = next(content_iter).to(device)
style_images = next(style_iter).to(device)
loss_c, loss_s = network(content_images, style_images)
loss_c = args.content_weight * loss_c
loss_s = args.style_weight * loss_s
loss = loss_c + loss_s
optimizer.zero_grad()
loss.backward()
optimizer.step()
writer.add_scalar('loss_content', loss_c.item(), i + 1)
writer.add_scalar('loss_style', loss_s.item(), i + 1)
if (i + 1) % args.save_model_interval == 0 or (i + 1) == args.max_iter:
state_dict = net.decoder.state_dict()
for key in state_dict.keys():
state_dict[key] = state_dict[key].to(torch.device('cpu'))
torch.save(state_dict,
'{:s}/decoder_iter_{:d}.pth.tar'.format(args.save_dir,
i + 1))
writer.close()