forked from PyFE/PyFENG
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sabr_mc.py
546 lines (441 loc) · 17.4 KB
/
sabr_mc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
import math
import abc
import numpy as np
import scipy.optimize as spop
import scipy.stats as spst
import scipy.special as spsp
from functools import partial
import scipy.integrate as scint
from . import sabr
from . import sv_abc as sv
#### Use of RN generation spawn:
# 0: simulation of volatility (normal)
# 2: integrated/average variance (lognormal)
# 5: asset return
class SabrMcABC(sabr.SabrABC, sv.CondMcBsmABC, abc.ABC):
def vol_step(self, dt, log=False):
"""
SABR sigma after dt according to the volatility dynamics (GBM).
Because of the multiplicative property of sigma, we assume sigma_0 = 1
Args:
dt: time step
log: if True, return log(sigma). False by default.
Returns:
sigma_dt
"""
vovn = self.vov * np.sqrt(dt)
zz = self.rv_normal(spawn=0)
if log:
return vovn * (zz - vovn/2)
else:
return np.exp(vovn * (zz - vovn/2))
@abc.abstractmethod
def cond_states_step(self, dt, sigma_0):
"""
Final variance after dt and average variance over (0, dt) given sigma_0.
`sigma_0` should be an array of (self.n_path, )
Args:
dt: time step
sigma_0: initial volatility
Returns:
(sigma after dt, average variance during dt)
"""
return NotImplementedError
def draw_log_return(self, dt, sigma_0, sigma_t, avgvar):
"""
Samples log return, log(S_t/S_0). Currently implemented only for beta=1
Args:
dt: time step
sigma_0: initial variance
sigma_t: final variance
avgvar: average variance
Returns:
log return (self.n_path, )
"""
assert np.isclose(self.beta, 1.0)
ln_m = (self.intr - self.divr)*dt + self.rho/self.vov*(sigma_t - sigma_0) - 0.5*avgvar*dt
ln_sig = np.sqrt((1.0 - self.rho**2) * dt * avgvar)
zn = self.rv_normal(spawn=5)
return ln_m + ln_sig * zn
def cond_spot_sigma(self, texp, fwd, mu=0):
"""
Spot and sigma ratio.
Args:
texp: time to expiry
fwd: forward. Only used for calculating alpha
mu: BM shift (currently not used)
Returns:
(spot ratio, sigma ratio)
"""
tobs = self.tobs(texp)
dt = np.diff(tobs, prepend=0)
n_dt = len(dt)
#### sigma is normalized to 1
sigma_t = np.full(self.n_path, 1.0)
avgvar = np.zeros(self.n_path)
for i in range(n_dt):
sigma_t, avgvar_inc = self.cond_states_step(dt[i], sigma_t)
avgvar += avgvar_inc * dt[i]
avgvar /= texp
alpha, betac, rhoc, rho2, vovn = self._variables(fwd, texp)
vol_cond = rhoc * np.sqrt(avgvar)
rho_alpha = self.rho * alpha
if np.isclose(self.beta, 0):
spot_cond = 1 + rho_alpha / self.vov * (sigma_t - 1)
else:
spot_cond = 1.0 / self.vov * (sigma_t - 1) - 0.5 * rho_alpha * avgvar * texp
np.exp(rho_alpha * spot_cond, out=spot_cond)
return spot_cond, vol_cond
def price(self, strike, spot, texp, cp=1):
fwd = self.forward(spot, texp)
alpha, betac, rhoc, rho2, vovn = self._variables(fwd, texp)
kk = strike / fwd
fwd_ratio, vol_ratio = self.cond_spot_sigma(texp, fwd)
if self.correct_fwd:
fwd_ratio /= np.mean(fwd_ratio)
if self.beta > 0:
ind = (fwd_ratio > 1e-16)
else:
ind = (fwd_ratio > -999)
fwd_ratio = np.expand_dims(fwd_ratio[ind], -1)
vol_ratio = np.expand_dims(vol_ratio[ind], -1)
base_model = self.base_model(alpha * vol_ratio)
base_model.is_fwd = True
price_vec = base_model.price(kk, fwd_ratio, texp, cp=cp)
price = fwd * np.sum(price_vec, axis=0) / self.n_path
return price
class SabrMcTimeDisc(SabrMcABC):
"""
Conditional MC for SABR model (beta=0,1 or rho=0) with conditional Monte-Carlo simulation
"""
scheme = 0
def cond_states_step_trapez(self, dt, sigma_0):
sigma_t = sigma_0 * self.vol_step(dt)
avgvar = (sigma_0**2 + sigma_t**2) / 2.
return sigma_t, avgvar
def cond_states_step_chen_2012(self, dt, sigma_0):
vovn = self.vov * np.sqrt(dt)
zhat = self.rv_normal(spawn=0) - vovn/2.
sigma_t = sigma_0 * np.exp(vovn * zhat)
m1, mnc2, mnc3, mnc4 = self.cond_avgvar_mnc4(vovn, zhat)
scale = np.sqrt(np.log(mnc2/m1**2))
avgvar = sigma_0**2 * m1 * np.exp(scale*(self.rv_normal(spawn=2) - scale/2.))
return sigma_t, avgvar
def cond_states_step(self, dt, sigma_0):
sigma_t = self.vol_step(dt)
if self.scheme == 0:
sigma_t, avgvar = self.cond_states_step_trapez(dt, sigma_0)
elif self.scheme == 1:
sigma_t, avgvar = self.cond_states_step_chen_2012(dt, sigma_0)
else:
ValueError(f"Incorrect scheme: {self.scheme}.")
return sigma_t, avgvar
def vol_paths(self, tobs, mu=0):
"""
exp(vovn B_s - 0.5*vovn^2 * s) where s = 0, ..., 1, vovn = vov * sqrt(T)
Args:
tobs: observation time (array)
mu: rn-derivative
Returns: volatility path (time, path) including the value at t=0
"""
texp = tobs[-1]
tobs01 = tobs / texp # normalized time: 0<s<1
vovn = self.vov * np.sqrt(texp)
log_sig_s = self._bm_incr(tobs01, cum=True) # B_s (0 <= s <= 1)
log_rn_deriv = 0.0 if mu == 0 else -mu * (log_sig_s[-1, :] + 0.5 * mu)
log_sig_s = vovn * (log_sig_s + (mu - 0.5 * vovn) * tobs01[:, None])
log_sig_s = np.insert(log_sig_s, 0, np.zeros(log_sig_s.shape[1]), axis=0)
return np.exp(log_sig_s), log_rn_deriv
def cond_spot_sigma_volpath(self, texp, sigma_0, mu=0):
"""
Kept for backward compatibility and rn_deriv
Args:
texp:
sigma_0:
mu:
Returns:
"""
rhoc = np.sqrt(1.0 - self.rho**2)
rho_sigma = self.rho * sigma_0
tobs = self.tobs(texp)
n_dt = len(tobs)
sigma_paths, log_rn_deriv = self.vol_paths(tobs, mu=mu)
sigma_final = sigma_paths[-1, :]
int_var = scint.simps(sigma_paths**2, dx=1, axis=0) / n_dt
vol_cond = rhoc * np.sqrt(int_var)
if np.isclose(self.beta, 0):
spot_cond = rho_sigma / self.vov * (sigma_final - 1)
else:
spot_cond = 1.0 / self.vov * (sigma_final - 1) - 0.5 * rho_sigma * int_var * texp
np.exp(rho_sigma * spot_cond, out=spot_cond)
return spot_cond, vol_cond, log_rn_deriv
def mass_zero(self, spot, texp, log=False, mu=0):
assert 0 < self.beta < 1
assert np.isclose(self.rho, 0.0)
### We calculate under normalization by fwd.
fwd = self.forward(spot, texp)
alpha, betac, rhoc, rho2, vovn = self._variables(fwd, texp)
### mu is currently not used.
if mu is None:
eta = self.vov * np.power(spot, betac) / (self.sigma * betac)
vovn = self.vov * np.sqrt(texp)
mu = 0.5 * (vovn + np.log1p(eta**2) / vovn)
# print(f'mu = {mu}')
fwd_ratio, vol_ratio = self.cond_spot_sigma(texp, fwd)
assert np.isclose(fwd_ratio, 1.0).all()
log_rn_deriv = 0.0 ## currently not used
base_model = self.base_model(alpha * vol_ratio)
base_model.is_fwd = True
if log:
log_mass_grid = base_model.mass_zero(1.0, texp, log=True) + log_rn_deriv
log_mass_max = np.amax(log_mass_grid)
log_mass_grid -= log_mass_max
log_mass = log_mass_max + np.log(np.mean(np.exp(log_mass_grid)))
return log_mass
else:
mass_grid = base_model.mass_zero(1.0, texp, log=False) * np.exp(log_rn_deriv)
mass = np.mean(mass_grid)
return mass
def return_var_realized(self, texp, cond):
return None
class SabrMcCai2017Exact(SabrMcABC):
"""
Cai et al. (2017)'s exact simulation of the SABR model
References:
- Cai N, Song Y, Chen N (2017) Exact Simulation of the SABR Model. Oper Res 65:931–951. https://doi.org/10.1287/opre.2017.1617
"""
m_inv = 20
m_euler = 20
n_euler = 35
comb_coef = None
nn = None
def set_num_params(self, n_path=10000, dt=None, rn_seed=None, antithetic=True, m_inv=20, m_euler=20, n_euler=35):
"""
Set MC parameters
Args:
n_path: number of paths
dt: time step
rn_seed: random number seed
antithetic: antithetic
m_inv: parameter M in Laplace inversion, Eq. (16)
m_euler: parameter m in Euler transformation E(m,n)
n_euler: parameter n in Euler transformation E(m,n)
"""
self.m_inv = m_inv
self.m_euler = m_euler
self.n_euler = n_euler
self.comb_coef = spsp.comb(self.m_euler, np.arange(0, self.m_euler+0.1)) * np.power(0.5, self.m_euler)
assert abs(self.comb_coef.sum()-1) < 1e-8
self.nn = np.arange(0, self.m_euler + self.n_euler + 0.1)
super().set_num_params(n_path, dt, rn_seed, antithetic)
def cond_laplace(self, theta, vovn, sigma_t):
"""
Eq. (15) of the paper
Return the laplace transform function
Args:
theta: dummy variable
vovn: vov * sqrt(texp)
sigma_t: normalized sigma final
Returns:
(Laplace transform function)
"""
x = np.log(sigma_t)
lam = theta * vovn**2
z = 0.5*sigma_t + (0.5 + lam)/sigma_t
phi = np.log(z + np.sqrt(z**2 - 1))
return np.exp((x**2 - phi**2) / (2*vovn**2)) / theta
def inv_laplace(self, u, vovn, sigma_t):
"""
Eq. (16) in the article
Return the original function from transform function
Args:
u: dummy variable
vovn: vov * sqrt(texp)
sigma_t: final volatility
Returns:
original function value at u
"""
## index from 0 to m + n
ss_j = self.cond_laplace((self.m_inv - 2j * np.pi * self.nn[:, None]) / (2*u), vovn, sigma_t).real
term1 = 0.5 * ss_j[0, :]
ss_j[1::2, :] *= -1
np.cumsum(ss_j, axis=0, out=ss_j)
term2 = np.sum(self.comb_coef[:, None] * ss_j[self.n_euler:, :], axis=0)
origin_L = np.exp(self.m_inv/2) / u * (-term1 + term2)
if np.isscalar(u):
origin_L = origin_L[0]
return origin_L
def draw_cond_avgvar(self, dt, sigma_t):
"""
Draw normalized average variance given sigma_t (and sigma_0 = 1)
int_0^1 exp{2 vovn Z_s - vovn^2 s} ds | exp(Z_1 - vovn/2) = sigma_t
Args:
dt: time step
sigma_t: final sigma given sigma_0=1
Returns:
(n_path, ) array
"""
vovn = self.vov * np.sqrt(dt)
uu = self.rv_uniform(spawn=2)
avgvar = np.zeros_like(sigma_t)
for i in range(len(sigma_t)):
obj_func = lambda x: self.inv_laplace(x, vovn, sigma_t[i]) - uu[i]
sol = spop.brentq(obj_func, 1e-7, 1e5)
avgvar[i] = 1 / sol
"""
## Vectorized newton method, but doesn't work well
zz = self.rv_normal(spawn=2)
uu = spst.norm.cdf(zz)
ln_m, m2 = self.cond_avgvar_mv(vovn, np.log(sigma_t) / vovn)
ln_sig = np.sqrt(np.log(m2 / ln_m ** 2))
print(sigma_t, '\n', ln_sig, '\n', uu)
def obj_func(z):
x = ln_m * np.exp(ln_sig * (z - ln_sig / 2))
return self.inv_laplace(x, vovn, sigma_t) - uu
avgvar = 1 / spop.newton(obj_func, zz)
"""
return avgvar
def cond_states_step(self, dt, sigma_0):
sigma_t = self.vol_step(dt) ## ratio
avgvar = sigma_0**2 * self.draw_cond_avgvar(dt, sigma_t)
sigma_t *= sigma_0
return sigma_t, avgvar
# The algorithem below is about pricing when 0<=beta<1
def simu_ST(self, beta, VT, spot):
'''
calculate C(u), C(u) will be used in the Ft's cdf
equation (6) in Cai(2017)
Parameters
----------
VT:float, intergated sigma
beta: float, beta of the sabr model
spot: spot prices
Returns
----------
cdf of a central chi2 distribution with x=A0, degree of freedom = 1/(1 - beta)
'''
u_lst = self.rng.uniform(size=self.n_path)
forward_ls = np.zeros(self.n_path)
for i in range(self.n_path):
u = u_lst[i]
VTi = VT[i]
P0 = 1 - self.central_chi2_cdf(beta, VTi, spot)
if u <= P0:
forward_ls[i] = 0
else:
_chi2_cdf = partial(self.sabr_chi2_cdf, beta, VTi, spot)
obj_func = lambda u_hat: 1 - _chi2_cdf(u_hat) - u
sol = spop.root(obj_func, spot)
forward_ls[i] = sol.x
return forward_ls
@staticmethod
def central_chi2_cdf(beta, VT, spot):
'''
calculate C(u), C(u) will be used in the Ft's cdf
equation (6) in Cai(2017)
Parameters
----------
VT:float, intergated sigma
beta: float, beta of the sabr model
spot: spot prices
Returns
----------
cdf of a central chi2 distribution with x=A0, degree of freedom = 1/(1 - beta)
'''
A0 = 1 / VT * (spot**(1 - beta) / (1 - beta))**2
return spst.chi2.cdf(A0, 1 / (1 - beta))
@staticmethod
def C0_func(VT, beta, u):
'''
calculate C(u), C(u) will be used in the Ft's cdf
equation (6) in Cai(2017)
Parameters
----------
VT:float, intergated sigma
beta: float, beta of the sabr model
u: float, C0 function's input
Returns
----------
C0 function
'''
numerator = u**(2 * (1 - beta))
return 1 / VT * numerator / (1 - beta)**2
@classmethod
def sabr_chi2_cdf(cls, beta, VT, spot, u):
'''
Equation (18) in Cai(2017)'s paper
calculate chi2_cdf only for sabr model
(based on chi2_cdf_approximation, but modify to cater the need of sabr model)
Parameters
----------
beta: float, beta in the sabr model
VT: float, intergrated sigma
spot: float, spot prices
u: float, C0 function's input
Returns
----------
cdf of the chi-square distribution specified by a sabr model's parameter and u
'''
A0 = 1 / VT * (np.power(spot, 1.0 - beta) / (1 - beta))**2 # Equation (6) in Cai's paper
C0 = cls.C0_func(VT, beta, u)
return cls.chi2_cdf_appr(A0, 1 / (1 - beta), C0)
@staticmethod
def chi2_cdf_appr(x, sigma, l):
'''
when x < 500 and l < 500:
equation (19) in Cai(2017)
The recursive alogorithm propose by Ding(1992) to calculate chi-2 cdf
when x > 500 or l > 500:
analytic approximation of Penev and Raykov(2000)
Parameters
----------
x: x value in the cdf
sigma: sigma parameter for the chi2 distribution
l: lambda parameter for the chi2 distribution
Returns
----------
cdf of chi2 distribution of given x, sigma and lambda
'''
cdf = 0
k = 0
if x <= 500 and l <= 500:
while True:
if k >= 1 and (sigma + 2 * k) > x and t * x / (sigma + 2 * k - x) <= 1e-7:
# note that this condition come from the Cai(2017) and Ding(1992) and use short-circuit tricks in cs
break
elif k == 0:
t = 1 / math.gamma(sigma / 2 + 1) * (x / 2)**(sigma / 2) * np.exp(-x / 2)
y = np.exp(-l / 2)
u = y
else:
t = t * x / (sigma + 2 * k)
u = u * l / (2 * k)
y = y + u
k += 1
element = y * t
cdf += element
else: # x >-500 or l>500
K_func = lambda s: ((1 - s) * np.log(1 - s) + s - s**2 / 2) / s**2
def yita_func(mu2, s):
K_s = K_func(1 - s)
numerator = 1 + 2 * mu2 * s - 2 * K_s - s - 2 * mu2 * s**2
denominator = 1 + 2 * mu2 * s - 2 * K_s
return numerator / denominator
def theta_func(mu2, yita, s):
return -1.5 * (1 + 4 * mu2 * s) / (1 + 2 * mu2 * s)**2 + 5 / 3 * (1 + 3 * mu2 * s)**2 / (
1 + 2 * mu2 * s)**3 + \
2 * (1 + 3 * mu2 * s) / (s - 1) / (1 + 2 * mu2 * s)**2 + 3 * yita / (s - 1)**2 / (
1 + 2 * mu2 * s) - \
(1 + 2 * K_func(yita)) * yita**2 / 2 / (s - 1)**2 / (1 + 2 * mu2 * s)
mu2 = l / sigma
mu = np.sqrt(mu2)
s = (np.sqrt(1 + 4 * x * mu**2 / sigma) - 1) / (2 * mu2)
yita = yita_func(mu2, s)
theta_s = partial(theta_func, mu2, yita)
z = np.sign(s - 1) * (sigma * (s - 1)**2 * (1 / 2 / s + mu2 - K_func(1 - s) / s) - np.log(
1 / s - 2 * K_func(1 - s) / (s * (1 + 2 * mu2 * s)))
+ 2 * theta_s(s) / sigma)**0.5
cdf = spst.norm.cdf(z)
return cdf
def return_var_realized(self, texp, cond):
return None