forked from swiftlang/swift
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathAlgorithms.swift.gyb
874 lines (761 loc) · 26.6 KB
/
Algorithms.swift.gyb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
//===--- Algorithms.swift.gyb ---------------------------------*- swift -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
// RUN: %empty-directory(%t)
// RUN: %gyb -DWORD_BITS=%target-ptrsize %s -o %t/out.swift
// RUN: %line-directive %t/out.swift -- %target-build-swift -parse-stdlib %t/out.swift -o %t/a.out -Onone
// RUN: %line-directive %t/out.swift -- %target-run %t/a.out
// REQUIRES: executable_test
import Swift
import StdlibUnittest
%{
from gyb_stdlib_support import (
TRAVERSALS,
collectionForTraversal,
defaultIndicesForTraversal,
sliceTypeName
)
}%
//===--- Rotate -----------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// In the stdlib, this would simply be MutableCollection
public protocol MutableCollectionAlgorithms : MutableCollection {
/// Rotates the elements of the collection so that the element
/// at `middle` ends up first.
///
/// - Returns: The new index of the element that was first
/// pre-rotation.
/// - Complexity: O(*n*)
@discardableResult
mutating func rotate(shiftingToStart middle: Index) -> Index
/// Rotates the elements in `bounds` so that the element
/// at `middle` ends up first in `bounds`.
///
/// - Returns: The new index of the element that was first
/// pre-rotation.
/// - Complexity: O(*n*)
@discardableResult
mutating func rotateSubrange(
_ bounds: Range<Index>, shiftingToStart middle: Index
) -> Index
}
// In the stdlib, this conformance wouldn't be needed
extension Array : MutableCollectionAlgorithms { }
/// In the stdlib, this would simply be MutableCollection
extension MutableCollectionAlgorithms {
@inline(__always)
internal mutating func _swapNonemptySubrangePrefixes(
_ lhs: Range<Index>, _ rhs: Range<Index>
) -> (Index, Index) {
_sanityCheck(!lhs.isEmpty)
_sanityCheck(!rhs.isEmpty)
var p = lhs.lowerBound
var q = rhs.lowerBound
repeat {
swap(&self[p], &self[q])
formIndex(after: &p)
formIndex(after: &q)
}
while p != lhs.upperBound && q != rhs.upperBound
return (p, q)
}
@inline(__always)
internal mutating func _swapSubrangePrefixes(
_ lhs: Range<Index>, with rhs: Range<Index>
) -> (Index, Index) {
return lhs.isEmpty || rhs.isEmpty
? (lhs.lowerBound, rhs.lowerBound)
: _swapNonemptySubrangePrefixes(lhs, rhs)
}
/// Rotates the elements of the collection so that the element
/// at `middle` ends up first.
///
/// - Returns: The new index of the element that was first
/// pre-rotation.
/// - Complexity: O(*n*)
@discardableResult
public mutating func rotate(shiftingToStart middle: Index) -> Index {
return rotateSubrange(startIndex..<endIndex, shiftingToStart: middle)
}
/// Rotates the elements in `bounds` so that the element
/// at `middle` ends up first.
///
/// - Returns: The new index of the element that was first
/// pre-rotation.
/// - Complexity: O(*n*)
@discardableResult
public mutating func rotateSubrange(
_ bounds: Range<Index>, shiftingToStart middle: Index
) -> Index {
return _rotateSubrangeForward(bounds, shiftingToStart: middle)
}
// Broken out of the method above for testability purposes
@discardableResult
internal mutating func _rotateSubrangeForward(
_ bounds: Range<Index>, shiftingToStart middle: Index
) -> Index {
var m = middle, s = bounds.lowerBound
let e = bounds.upperBound
// Handle the trivial cases
if s == m { return e }
if m == e { return s }
// We have two regions of possibly-unequal length that need to be
// exchanged. The return value of this method is going to be the
// position following that of the element that is currently last
// (element j).
//
// [a b c d e f g|h i j] or [a b c|d e f g h i j]
// ^ ^ ^ ^ ^ ^
// s m e s m e
//
var ret = e // start with a known incorrect result.
while true {
// Exchange the leading elements of each region (up to the
// length of the shorter region).
//
// [a b c d e f g|h i j] or [a b c|d e f g h i j]
// ^^^^^ ^^^^^ ^^^^^ ^^^^^
// [h i j d e f g|a b c] or [d e f|a b c g h i j]
// ^ ^ ^ ^ ^ ^ ^ ^
// s s1 m m1/e s s1/m m1 e
//
let (s1, m1) = _swapNonemptySubrangePrefixes(s..<m, m..<e)
if m1 == e {
// Left-hand case: we have moved element j into position. if
// we haven't already, we can capture the return value which
// is in s1.
//
// Note: the STL breaks the loop into two just to avoid this
// comparison once the return value is known. I'm not sure
// it's a worthwhile optimization, though.
if ret == e { ret = s1 }
// If both regions were the same size, we're done.
if s1 == m { break }
}
// Now we have a smaller problem that is also a rotation, so we
// can adjust our bounds and repeat.
//
// h i j[d e f g|a b c] or d e f[a b c|g h i j]
// ^ ^ ^ ^ ^ ^
// s m e s m e
s = s1
if s == m { m = m1 }
}
return ret
}
}
extension MutableCollection where Self: BidirectionalCollection {
// This could be internal, but until we have pinned accessors for
// slices, every mutating algorithm needs a version that takes
// indices in order to get performance.
/// Reverses the elements in the given subrange in place.
///
/// var characters: [Character] = ["^", "C", "a", "f", "é", "$""]
/// let r = characters.index(after: characters.startIndex)
/// ..< characters.index(before: characters.endIndex)
/// characters.reverseSubrange(r)
/// print(cafe.characters)
/// // Prints "["^", "é", "f", "a", "C", "$"]
///
/// - Complexity: O(*n*), where *n* is the number of elements in the
/// subrange.
public mutating func reverseSubrange(_ bounds: Range<Index>) {
if bounds.isEmpty { return }
var f = bounds.lowerBound
var l = index(before: bounds.upperBound)
while f < l {
swap(&self[f], &self[l])
formIndex(after: &f)
formIndex(before: &l)
}
}
@inline(__always)
@discardableResult
internal mutating func _reverseUntil(_ limit: Index) -> (Index, Index) {
var f = startIndex
var l = endIndex
while f != limit && l != limit {
formIndex(before: &l)
swap(&self[f], &self[l])
formIndex(after: &f)
}
return (f, l)
}
/// Rotates the elements of the collection so that the element
/// at `middle` ends up first.
///
/// - Returns: The new index of the element that was first
/// pre-rotation.
/// - Complexity: O(*n*)
@discardableResult
public mutating func rotate(shiftingToStart middle: Index) -> Index {
// FIXME: this algorithm should be benchmarked on arrays against
// the forward Collection algorithm above to prove that it's
// actually faster. The other one sometimes does more swaps, but
// has better locality properties. Similarly, we've omitted a
// specialization of rotate for RandomAccessCollection that uses
// cycles per section 11.4 in "From Mathematics to Generic
// Programming" by A. Stepanov because it has *much* worse
// locality properties than either of the other implementations.
// Benchmarks should be performed for that algorithm too, just to
// be sure.
reverseSubrange(startIndex..<middle)
reverseSubrange(middle..<endIndex)
let (p, q) = _reverseUntil(middle)
reverseSubrange(p..<q)
return middle == p ? q : p
}
}
/// Returns the greatest common denominator for `m` and `n`.
internal func _gcd(_ m: Int, _ n: Int) -> Int {
var (m, n) = (m, n)
while n != 0 {
let t = m % n
m = n
n = t
}
return m
}
extension MutableCollection where Self: RandomAccessCollection,
SubSequence: MutableCollection, SubSequence: RandomAccessCollection {
/// Rotates elements through a cycle, using `sourceForIndex` to generate
/// the source index for each movement.
@inline(__always)
internal mutating func _rotateCycle(start: Index,
transform sourceForIndex: (Index) -> Index)
{
let tmp = self[start]
var (i, j) = (start, sourceForIndex(start))
while j != start {
self[i] = self[j]
i = j
j = sourceForIndex(j)
}
self[i] = tmp
}
/// Rotates the elements of the collection so that the element
/// at `middle` ends up first.
///
/// - Returns: The new index of the element that was first
/// pre-rotation.
/// - Complexity: O(*n*)
@discardableResult
public mutating func rotateRandomAccess(
shiftingToStart middle: Index) -> Index
{
if middle == startIndex { return endIndex }
if middle == endIndex { return startIndex }
// The distance to move an element that is moving ->
let plus = distance(from: startIndex, to: middle)
// The distance to move an element that is moving <-
let minus = distance(from: endIndex, to: middle)
// The new pivot point, aka the destination for the first element
let pivot = index(startIndex, offsetBy: -minus)
// If the difference moving forward and backward are relative primes,
// the entire rotation will be completed in one cycle. Otherwise, repeat
// cycle, moving the start point forward with each cycle.
let cycles = _gcd(numericCast(plus), -numericCast(minus))
for cycle in 1...cycles {
_rotateCycle(start: index(startIndex, offsetBy: numericCast(cycle))) {
index($0, offsetBy: $0 < pivot ? plus : minus)
}
}
return pivot
}
}
//===--- ConcatenatedCollection -------------------------------------------===//
//===----------------------------------------------------------------------===//
// ConcatenatedCollection improves on a flattened array or other collection by
// allowing random-access traversal if the underlying collections are
// random-access.
//
// Q: Add a ConcatenatedSequence for consistency? Would be nice to be able to
// call `let seqAB = concatenate(seqA, seqB)`.
/// Represents a position in either the first or second collection of a
/// `ConcatenatedCollection`.
internal enum _ConcatenatedCollectionIndexRepresentation<
I1 : Comparable, I2 : Comparable
> {
case first(I1)
case second(I2)
}
/// A position in a `ConcatenatedCollection` collection.
public struct ConcatenatedCollectionIndex<
C1 : Collection, C2 : Collection
> : Comparable {
/// Creates a new index into the first underlying collection.
internal init(first i: C1.Index) {
_position = .first(i)
}
/// Creates a new index into the second underlying collection.
internal init(second i: C2.Index) {
_position = .second(i)
}
internal let _position:
_ConcatenatedCollectionIndexRepresentation<C1.Index, C2.Index>
}
public func < <C1: Collection, C2: Collection>(
lhs: ConcatenatedCollectionIndex<C1, C2>,
rhs: ConcatenatedCollectionIndex<C1, C2>
) -> Bool {
switch (lhs._position, rhs._position) {
case (.first, .second):
return true
case (.second, .first):
return false
case let (.first(l), .first(r)):
return l < r
case let (.second(l), .second(r)):
return l < r
}
}
public func == <C1: Collection, C2: Collection>(
lhs: ConcatenatedCollectionIndex<C1, C2>,
rhs: ConcatenatedCollectionIndex<C1, C2>
) -> Bool {
switch (lhs._position, rhs._position) {
case let (.first(l), .first(r)):
return l == r
case let (.second(l), .second(r)):
return l == r
default:
return false
}
}
% for Traversal in TRAVERSALS:
% Collection = collectionForTraversal(Traversal)
% Self = "Concatenated" + Collection
/// A concatenation of two collections with the same element type.
public struct ${Self}<C1 : ${Collection}, C2: ${Collection}>: ${Collection}
where C1.Iterator.Element == C2.Iterator.Element {
init(_base1: C1, base2: C2) {
self._base1 = _base1
self._base2 = base2
}
public typealias Index = ConcatenatedCollectionIndex<C1, C2>
public var startIndex: Index {
// If `_base1` is empty, then `_base2.startIndex` is either a valid position
// of an element or equal to `_base2.endIndex`.
return _base1.isEmpty
? ConcatenatedCollectionIndex(second: _base2.startIndex)
: ConcatenatedCollectionIndex(first: _base1.startIndex)
}
public var endIndex: Index {
return ConcatenatedCollectionIndex(second: _base2.endIndex)
}
public subscript(i: Index) -> C1.Iterator.Element {
switch i._position {
case let .first(i):
return _base1[i]
case let .second(i):
return _base2[i]
}
}
public func index(after i: Index) -> Index {
switch i._position {
case let .first(i):
_sanityCheck(i != _base1.endIndex)
let next = _base1.index(after: i)
return next == _base1.endIndex
? ConcatenatedCollectionIndex(second: _base2.startIndex)
: ConcatenatedCollectionIndex(first: next)
case let .second(i):
return ConcatenatedCollectionIndex(second: _base2.index(after: i))
}
}
% if Traversal in ['Bidirectional', 'RandomAccess']:
public func index(before i: Index) -> Index {
assert(i != startIndex, "Can't advance before startIndex")
switch i._position {
case let .first(i):
return ConcatenatedCollectionIndex(first: _base1.index(before: i))
case let .second(i):
return i == _base2.startIndex
? ConcatenatedCollectionIndex(
first: _base1.index(before: _base1.endIndex))
: ConcatenatedCollectionIndex(second: _base2.index(before: i))
}
}
% end
% if Traversal is 'RandomAccess':
public func index(_ i: Index, offsetBy n: ${Self}.IndexDistance) -> Index {
if n == 0 { return i }
return n > 0 ? _offsetForward(i, by: n) : _offsetBackward(i, by: -n)
}
internal func _offsetForward(
_ i: Index, by n: ${Self}.IndexDistance
) -> Index {
switch i._position {
case let .first(i):
let d: ${Self}.IndexDistance = numericCast(
_base1.distance(from: i, to: _base1.endIndex))
if n < d {
return ConcatenatedCollectionIndex(
first: _base1.index(i, offsetBy: numericCast(n)))
} else {
return ConcatenatedCollectionIndex(
second: _base2.index(_base2.startIndex, offsetBy: numericCast(n - d)))
}
case let .second(i):
return ConcatenatedCollectionIndex(
second: _base2.index(i, offsetBy: numericCast(n)))
}
}
internal func _offsetBackward(
_ i: Index, by n: ${Self}.IndexDistance
) -> Index {
switch i._position {
case let .first(i):
return ConcatenatedCollectionIndex(
first: _base1.index(i, offsetBy: -numericCast(n)))
case let .second(i):
let d: ${Self}.IndexDistance = numericCast(
_base2.distance(from: _base2.startIndex, to: i))
if n <= d {
return ConcatenatedCollectionIndex(
second: _base2.index(i, offsetBy: -numericCast(n)))
} else {
return ConcatenatedCollectionIndex(
first: _base1.index(_base1.endIndex, offsetBy: -numericCast(n - d)))
}
}
}
% end
let _base1: C1
let _base2: C2
}
/// Returns a new collection that presents a view onto the elements of the
/// first collection and then the elements of the second collection.
func concatenate<
C1 : ${Collection}, C2 : ${Collection}
>(_ first: C1, _ second: C2) -> ${Self}<C1, C2>
where C1.Iterator.Element == C2.Iterator.Element {
return ${Self}(_base1: first, base2: second)
}
% end
//===--- RotatedCollection ------------------------------------------------===//
//===----------------------------------------------------------------------===//
/// A position in a rotated collection.
public struct RotatedCollectionIndex<Base : Collection> : Comparable
where Base.SubSequence: Collection {
internal let _index:
ConcatenatedCollectionIndex<Base.SubSequence, Base.SubSequence>
}
public func < <Base: Collection>(
lhs: RotatedCollectionIndex<Base>, rhs: RotatedCollectionIndex<Base>
) -> Bool
where Base.SubSequence: Collection {
return lhs._index < rhs._index
}
public func == <Base: Collection>(
lhs: RotatedCollectionIndex<Base>, rhs: RotatedCollectionIndex<Base>
) -> Bool
where Base.SubSequence: Collection {
return lhs._index == rhs._index
}
% for Traversal in TRAVERSALS:
% Collection = collectionForTraversal(Traversal)
% Self = "Rotated" + Collection
/// A rotated view onto a `${Collection}`.
public struct ${Self}<
Base : ${Collection}
> : ${Collection}
where Base.SubSequence: ${Collection} {
let _concatenation: Concatenated${Collection}<
Base.SubSequence, Base.SubSequence>
init(_base: Base, shiftingToStart i: Base.Index) {
_concatenation = concatenate(_base.suffix(from: i), _base.prefix(upTo: i))
}
public typealias Index = RotatedCollectionIndex<Base>
public var startIndex: Index {
return RotatedCollectionIndex(_index: _concatenation.startIndex)
}
public var endIndex: Index {
return RotatedCollectionIndex(_index: _concatenation.endIndex)
}
public subscript(i: Index) -> Base.SubSequence.Iterator.Element {
return _concatenation[i._index]
}
public func index(after i: Index) -> Index {
return RotatedCollectionIndex(_index: _concatenation.index(after: i._index))
}
% if Traversal in ['Bidirectional', 'RandomAccess']:
public func index(before i: Index) -> Index {
return RotatedCollectionIndex(
_index: _concatenation.index(before: i._index))
}
% end
public func index(_ i: Index, offsetBy n: ${Self}.IndexDistance) -> Index {
return RotatedCollectionIndex(
_index: _concatenation.index(i._index, offsetBy: n))
}
/// The shifted position of the base collection's `startIndex`.
public var shiftedStartIndex: Index {
return RotatedCollectionIndex(
_index: ConcatenatedCollectionIndex(
second: _concatenation._base2.startIndex)
)
}
}
extension ${Collection} where SubSequence: ${Collection} {
/// Returns a view of this collection with the elements reordered such the
/// element at the given position ends up first.
///
/// The subsequence of the collection up to `i` is shifted to after the
/// subsequence starting at `i`. The order of the elements within each
/// partition is otherwise unchanged.
///
/// let a = [10, 20, 30, 40, 50, 60, 70]
/// let r = a.rotated(shiftingToStart: 3)
/// // r.elementsEqual([40, 50, 60, 70, 10, 20, 30])
///
/// - Parameter i: The position in the collection that should be first in the
/// result. `i` must be a valid index of the collection.
/// - Returns: A rotated view on the elements of this collection, such that
/// the element at `i` is first.
func rotated(shiftingToStart i: Index) -> ${Self}<Self> {
return ${Self}(_base: self, shiftingToStart: i)
}
}
% end
//===--- Stable Partition -------------------------------------------------===//
//===----------------------------------------------------------------------===//
extension BidirectionalCollection
where Self : MutableCollectionAlgorithms,
SubSequence : BidirectionalCollection,
SubSequence.Index == Self.Index {
@discardableResult
mutating func stablePartition(
choosingStartGroupBy p: (Iterator.Element) -> Bool
) -> Index {
return stablyPartitionSubrange(
startIndex..<endIndex,
choosingStartGroupBy: p
)
}
mutating func stablyPartitionSubrange(
_ bounds: Range<Index>,
choosingStartGroupBy p: (Iterator.Element) -> Bool
) -> Index {
return _stablyPartitionSubrange(
bounds,
distance: distance(from: bounds.lowerBound, to: bounds.upperBound),
choosingStartGroupBy: p
)
}
mutating func _stablyPartitionSubrange(
_ bounds: Range<Index>,
distance n: IndexDistance,
choosingStartGroupBy p: (Iterator.Element) -> Bool
) -> Index {
assert(n >= 0)
let (start, end) = (bounds.lowerBound, bounds.upperBound)
assert(n == distance(from: start, to: end))
if n == 0 { return start }
if n == 1 {
return p(self[start]) ? index(after: start) : start
}
// divide and conquer.
let d = n / numericCast(2)
let m = index(start, offsetBy: d)
// TTTTTTTTT s FFFFFFF m ?????????????
let s = _stablyPartitionSubrange(
start..<m, distance: d, choosingStartGroupBy: p)
// TTTTTTTTT s FFFFFFF m TTTTTTT e FFFFFFFF
let e = _stablyPartitionSubrange(
m..<end, distance: n - d, choosingStartGroupBy: p)
// TTTTTTTTT s TTTTTTT m FFFFFFF e FFFFFFFF
return self.rotateSubrange(s..<e, shiftingToStart: m)
}
}
extension Collection {
func stablyPartitioned(
choosingStartGroupBy p: (Iterator.Element) -> Bool
) -> [Iterator.Element] {
var a = Array(self)
a.stablePartition(choosingStartGroupBy: p)
return a
}
}
extension LazyCollectionProtocol
where Iterator.Element == Elements.Iterator.Element {
func stablyPartitioned(
choosingStartGroupBy p: (Iterator.Element) -> Bool
) -> LazyCollection<[Iterator.Element]> {
return elements.stablyPartitioned(choosingStartGroupBy: p).lazy
}
}
extension Collection {
/// Returns the index of the first element in the collection
/// that matches the predicate.
///
/// The collection must already be partitioned according to the
/// predicate, as if `self.partition(by: predicate)` had already
/// been called.
func partitionPoint(
where predicate: (Iterator.Element) throws -> Bool
) rethrows -> Index {
var n = distance(from: startIndex, to: endIndex)
var r = startIndex..<endIndex
while n > 0 {
let half = n / 2
let mid = index(r.lowerBound, offsetBy: half)
if try predicate(self[mid]) {
r = r.lowerBound..<mid
n = half
}
else {
r = index(after: mid)..<r.upperBound
n -= half + 1
}
}
return r.lowerBound
}
}
//===--- Tests ------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
var suite = TestSuite("Algorithms")
suite.test("reverseSubrange") {
for l in 0..<10 {
let a = Array(0..<l)
for p in a.startIndex...a.endIndex {
let prefix = a.prefix(upTo: p)
for q in p...l {
let suffix = a.suffix(from: q)
var b = a
b.reverseSubrange(p..<q)
expectEqual(
b,
Array([prefix, ArraySlice(a[p..<q].reversed()), suffix].joined()))
}
}
}
}
suite.test("rotate") {
for l in 0..<11 {
let a = Array(0..<l)
for p in a.startIndex...a.endIndex {
let prefix = a.prefix(upTo: p)
for q in p...l {
let suffix = a.suffix(from: q)
for m in p...q {
var b = a
let r0 = b._rotateSubrangeForward(p..<q, shiftingToStart: m)
let rotated = Array([prefix, a[m..<q], a[p..<m], suffix].joined())
expectEqual(b, rotated)
expectEqual(r0, a.index(p, offsetBy: a[m..<q].count))
b = a
let r1 = b.rotateSubrange(p..<q, shiftingToStart: m)
expectEqual(b, rotated)
expectEqual(r1, r0)
}
}
var b = a
b.rotate(shiftingToStart: p)
expectEqual(b, Array(a.rotated(shiftingToStart: p)))
}
}
}
suite.test("rotateRandomAccess") {
for l in 0..<11 {
let a = Array(0..<l)
for p in a.startIndex...a.endIndex {
let prefix = a.prefix(upTo: p)
for q in p...l {
let suffix = a.suffix(from: q)
for m in p...q {
var b = a
let r0 = b[p..<q].rotateRandomAccess(shiftingToStart: m)
let rotated = Array([prefix, a[m..<q], a[p..<m], suffix].joined())
expectEqual(b, rotated)
expectEqual(r0, a.index(p, offsetBy: a[m..<q].count))
b = a
let r1 = b[p..<q].rotateRandomAccess(shiftingToStart: m)
expectEqual(b, rotated)
expectEqual(r1, r0)
}
}
var b = a
b.rotateRandomAccess(shiftingToStart: p)
expectEqual(b, Array(a.rotated(shiftingToStart: p)))
}
}
}
suite.test("concatenate") {
for x in 0...6 {
for y in 0...x {
let r1 = 0..<y
let r2 = y..<x
expectEqual(Array(0..<x), Array(concatenate(r1, r2)))
}
}
let c1 = concatenate([1, 2, 3, 4, 5], 6...10)
let c2 = concatenate(1...5, [6, 7, 8, 9, 10])
expectEqual(Array(1...10), Array(c1))
expectEqual(Array(1...10), Array(c2))
let h = "Hello, "
let w = "world!"
let hw = concatenate(h.characters, w.characters)
expectEqual("Hello, world!", String(hw))
}
suite.test("stablePartition") {
for l in 0..<13 {
let a = Array(0..<l)
for p in a.startIndex...a.endIndex {
let prefix = a.prefix(upTo: p)
for q in p...l {
let suffix = a.suffix(from: q)
let subrange = a[p..<q]
for modulus in 1...5 {
let f = { $0 % modulus == 0 }
let notf = { !f($0) }
var b = a
var r = b.stablyPartitionSubrange(p..<q, choosingStartGroupBy: f)
expectEqual(b.prefix(upTo:p), prefix)
expectEqual(b.suffix(from:q), suffix)
expectEqual(b[p..<r], ArraySlice(subrange.filter(f)))
expectEqual(b[r..<q], ArraySlice(subrange.filter(notf)))
b = a
r = b.stablyPartitionSubrange(p..<q, choosingStartGroupBy: notf)
expectEqual(b.prefix(upTo:p), prefix)
expectEqual(b.suffix(from:q), suffix)
expectEqual(b[p..<r], ArraySlice(subrange.filter(notf)))
expectEqual(b[r..<q], ArraySlice(subrange.filter(f)))
}
}
for modulus in 1...5 {
let f = { $0 % modulus == 0 }
let notf = { !f($0) }
var b = a
var r = b.stablePartition(choosingStartGroupBy: f)
expectEqual(b.prefix(upTo: r), ArraySlice(a.filter(f)))
expectEqual(b.suffix(from: r), ArraySlice(a.filter(notf)))
b = a
r = b.stablePartition(choosingStartGroupBy: notf)
expectEqual(b.prefix(upTo: r), ArraySlice(a.filter(notf)))
expectEqual(b.suffix(from: r), ArraySlice(a.filter(f)))
}
}
}
}
suite.test("partitionPoint") {
for i in 0..<7 {
for j in i..<11 {
for k in i...j {
let p = (i..<j).partitionPoint { $0 >= k }
expectGE(p, i)
expectLE(p, j)
expectEqual(p, k)
}
}
}
}
runAllTests()