forked from IntelLabs/RAG-FiT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluation.py
103 lines (82 loc) · 2.86 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import logging
import os
from collections import defaultdict
import hydra
import torch
import yaml
from datasets import load_dataset
from hydra.utils import to_absolute_path
from omegaconf import OmegaConf
from tqdm import tqdm
logger = logging.getLogger(__name__)
def setup_wandb(args: dict):
"""
WANDB integration for tracking evaluations.
"""
import wandb
from wandb.wandb_run import Run
env = {key: os.getenv(key) for key in os.environ}
run: Run = wandb.init(
job_type="eval",
project=args["experiment"],
entity=args["wandb_entity"],
config={**args, **env},
tags=["eval"],
)
return run
@hydra.main(version_base=None, config_path="./configs", config_name="evaluation")
def main(args):
logger.info(OmegaConf.to_yaml(args))
if args.use_wandb:
run = setup_wandb(OmegaConf.to_container(args))
logger.info(f"Loading dataset: {args.data_file}")
data = load_dataset(
"json", data_files=to_absolute_path(args.data_file), split="train"
)
generated_data = load_dataset("json", data_files=args.generated_file, split="train")
logging.info(f"Loaded {len(generated_data)} examples from {args.generated_file}")
if args.limit:
data = data.select(range(args.limit))
if args.answer_processor:
answer_processor = hydra.utils.instantiate(
args.answer_processor, _convert_="object"
)
else:
def answer_processor(x):
return x
def map_load(example, idx):
example[args.key_names["generated"]] = answer_processor(
generated_data[idx][args.key_names["generated"]]
)
return example
data = data.map(map_load, with_indices=True)
size = len(data)
results = {"local": defaultdict(list), "global": {}}
for metric in args.metrics:
obj = hydra.utils.instantiate(
metric, key_names=args.key_names, _convert_="object"
)
if obj.local:
for example in tqdm(data):
calculation = obj.measure(example)
for key, val in calculation.items():
results["local"][key].append(val)
else:
calculation = obj.measure(data)
for key, val in calculation.items():
results["global"][key] = val
del obj
torch.cuda.empty_cache()
logging.info(f"Normalizing by size {size}")
for key in results["local"].keys():
results["local"][key] = float(sum(results["local"][key]) / size)
results["local"] = dict(results["local"])
logging.info(f"Results: {results}")
if args.use_wandb:
run.log(results, step=0)
if args.results_file:
with open(args.results_file, "w") as f:
yaml.dump(results, f, sort_keys=True)
logging.info(f"Results saved to {args.results_file}")
if __name__ == "__main__":
main()