forked from Kaggle/docker-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDockerfile
139 lines (123 loc) · 6.29 KB
/
Dockerfile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
FROM nvidia/cuda:10.1-cudnn7-devel-ubuntu18.04 AS nvidia
FROM gcr.io/deeplearning-platform-release/base-cpu:latest
# Avoid interactive configuration prompts/dialogs during apt-get.
ENV DEBIAN_FRONTEND=noninteractive
# This is necessary to for apt to access HTTPS sources
RUN apt-get update && \
apt-get install apt-transport-https
# Cuda support
COPY --from=nvidia /etc/apt/sources.list.d/cuda.list /etc/apt/sources.list.d/
COPY --from=nvidia /etc/apt/sources.list.d/nvidia-ml.list /etc/apt/sources.list.d/
COPY --from=nvidia /etc/apt/trusted.gpg /etc/apt/trusted.gpg.d/cuda.gpg
# See b/142337634#comment28
RUN sed -i 's/deb https:\/\/developer.download.nvidia.com/deb http:\/\/developer.download.nvidia.com/' /etc/apt/sources.list.d/*.list
# Ensure the cuda libraries are compatible with the GPU image.
# TODO(b/120050292): Use templating to keep in sync.
ENV CUDA_MAJOR_VERSION=10
ENV CUDA_MINOR_VERSION=1
ENV CUDA_PATCH_VERSION=243
ENV CUDA_VERSION=$CUDA_MAJOR_VERSION.$CUDA_MINOR_VERSION.$CUDA_PATCH_VERSION
ENV CUDA_PKG_VERSION=$CUDA_MAJOR_VERSION-$CUDA_MINOR_VERSION=$CUDA_VERSION-1
LABEL com.nvidia.volumes.needed="nvidia_driver"
LABEL com.nvidia.cuda.version="${CUDA_VERSION}"
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:${PATH}
# The stub is useful to us both for built-time linking and run-time linking, on CPU-only systems.
# When intended to be used with actual GPUs, make sure to (besides providing access to the host
# CUDA user libraries, either manually or through the use of nvidia-docker) exclude them. One
# convenient way to do so is to obscure its contents by a bind mount:
# docker run .... -v /non-existing-directory:/usr/local/cuda/lib64/stubs:ro ...
ENV LD_LIBRARY_PATH="${LD_LIBRARY_PATH}:/usr/local/nvidia/lib64:/usr/local/cuda/lib64:/usr/local/cuda/lib64/stubs:$LD_LIBRARY_PATH"
ENV NVIDIA_VISIBLE_DEVICES=all
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
ENV NVIDIA_REQUIRE_CUDA="cuda>=$CUDA_MAJOR_VERSION.$CUDA_MINOR_VERSION"
RUN apt-get update && apt-get install -y --no-install-recommends \
cuda-cupti-$CUDA_PKG_VERSION \
cuda-cudart-$CUDA_PKG_VERSION \
cuda-cudart-dev-$CUDA_PKG_VERSION \
cuda-libraries-$CUDA_PKG_VERSION \
cuda-libraries-dev-$CUDA_PKG_VERSION \
cuda-nvml-dev-$CUDA_PKG_VERSION \
cuda-minimal-build-$CUDA_PKG_VERSION \
cuda-command-line-tools-$CUDA_PKG_VERSION \
libcudnn7=7.6.5.32-1+cuda$CUDA_MAJOR_VERSION.$CUDA_MINOR_VERSION \
libcudnn7-dev=7.6.5.32-1+cuda$CUDA_MAJOR_VERSION.$CUDA_MINOR_VERSION \
libnccl2=2.5.6-1+cuda$CUDA_MAJOR_VERSION.$CUDA_MINOR_VERSION \
libnccl-dev=2.5.6-1+cuda$CUDA_MAJOR_VERSION.$CUDA_MINOR_VERSION && \
ln -s /usr/local/cuda-$CUDA_MAJOR_VERSION.$CUDA_MINOR_VERSION /usr/local/cuda && \
ln -s /usr/local/cuda/lib64/stubs/libcuda.so /usr/local/cuda/lib64/stubs/libcuda.so.1
RUN pip install --upgrade pip
# See _TF_(MIN|MAX)_BAZEL_VERSION at https://github.com/tensorflow/tensorflow/blob/master/configure.py.
ENV BAZEL_VERSION=2.0.0
RUN apt-get install -y gnupg zip openjdk-8-jdk && \
apt-get install -y --no-install-recommends \
bash-completion \
zlib1g-dev && \
wget --no-verbose "https://github.com/bazelbuild/bazel/releases/download/${BAZEL_VERSION}/bazel_${BAZEL_VERSION}-linux-x86_64.deb" && \
dpkg -i bazel_*.deb && \
rm bazel_*.deb
# Fetch TensorFlow & install dependencies.
RUN cd /usr/local/src && \
git clone https://github.com/tensorflow/tensorflow && \
cd tensorflow && \
git checkout tags/v2.2.0 && \
pip install keras_applications --no-deps && \
pip install keras_preprocessing --no-deps
# Create a TensorFlow wheel for CPU
RUN cd /usr/local/src/tensorflow && \
cat /dev/null | ./configure && \
bazel build --config=opt \
--config=v2 \
--cxxopt="-D_GLIBCXX_USE_CXX11_ABI=0" \
//tensorflow/tools/pip_package:build_pip_package && \
bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_cpu && \
bazel clean
# Install TensorFlow CPU wheel which is required to build the GCS & addons libraries.
RUN pip install /tmp/tensorflow_cpu/tensorflow*.whl
# Build TensorFlow addons library against TensorFlow CPU.
RUN cd /usr/local/src/ && \
git clone https://github.com/tensorflow/addons && \
cd addons && \
git checkout tags/v0.10.0 && \
python ./configure.py && \
bazel build --enable_runfiles build_pip_pkg && \
bazel-bin/build_pip_pkg /tmp/tfa_cpu && \
bazel clean
# Build tensorflow_gcs_config library against TensorFlow CPU.
ADD tensorflow-gcs-config /usr/local/src/tensorflow_gcs_config/
RUN cd /usr/local/src/tensorflow_gcs_config && \
apt-get install -y libcurl4-openssl-dev && \
python setup.py bdist_wheel -d /tmp/tensorflow_gcs_config && \
bazel clean
# Create a tensorflow wheel for GPU/cuda
ENV TF_NEED_CUDA=1
ENV TF_CUDA_VERSION=$CUDA_MAJOR_VERSION.$CUDA_MINOR_VERSION
# 3.7 is for the K80 and 6.0 is for the P100, 7.5 is for the T4: https://developer.nvidia.com/cuda-gpus
ENV TF_CUDA_COMPUTE_CAPABILITIES=3.7,6.0,7.5
ENV TF_CUDNN_VERSION=7
ENV TF_NCCL_VERSION=2
ENV NCCL_INSTALL_PATH=/usr/
RUN cd /usr/local/src/tensorflow && \
# TF_NCCL_INSTALL_PATH is used for both libnccl.so.2 and libnccl.h. Make sure they are both accessible from the same directory.
ln -s /usr/lib/x86_64-linux-gnu/libnccl.so.2 /usr/lib/ && \
cat /dev/null | ./configure && \
echo "/usr/local/cuda-${TF_CUDA_VERSION}/targets/x86_64-linux/lib/stubs" > /etc/ld.so.conf.d/cuda-stubs.conf && ldconfig && \
bazel build --config=opt \
--config=v2 \
--config=cuda \
--cxxopt="-D_GLIBCXX_USE_CXX11_ABI=0" \
//tensorflow/tools/pip_package:build_pip_package && \
rm /etc/ld.so.conf.d/cuda-stubs.conf && ldconfig && \
bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_gpu && \
bazel clean
# Install TensorFlow GPU wheel which to build addons against.
RUN pip install /tmp/tensorflow_gpu/tensorflow*.whl
# Build TensorFlow addons library against TensorFlow GPU.
ENV CUDA_TOOLKIT_PATH=/usr/local/cuda
ENV CUDNN_INSTALL_PATH=/usr/lib/x86_64-linux-gnu
RUN cd /usr/local/src/addons && \
python ./configure.py && \
bazel build --enable_runfiles build_pip_pkg && \
bazel-bin/build_pip_pkg /tmp/tfa_gpu && \
bazel clean
# Print out the built .whl files
RUN ls -R /tmp/tensorflow*