forked from hengyuan-hu/bottom-up-attention-vqa
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
45 lines (35 loc) · 1.53 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import argparse
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import numpy as np
from dataset import Dictionary, VQAFeatureDataset
import base_model
from train import train
import utils
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--epochs', type=int, default=30)
parser.add_argument('--num_hid', type=int, default=1024)
parser.add_argument('--model', type=str, default='baseline0_newatt')
parser.add_argument('--output', type=str, default='saved_models/exp0')
parser.add_argument('--batch_size', type=int, default=512)
parser.add_argument('--seed', type=int, default=1111, help='random seed')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.backends.cudnn.benchmark = True
dictionary = Dictionary.load_from_file('data/dictionary.pkl')
train_dset = VQAFeatureDataset('train', dictionary)
eval_dset = VQAFeatureDataset('val', dictionary)
batch_size = args.batch_size
constructor = 'build_%s' % args.model
model = getattr(base_model, constructor)(train_dset, args.num_hid).cuda()
model.w_emb.init_embedding('data/glove6b_init_300d.npy')
model = nn.DataParallel(model).cuda()
train_loader = DataLoader(train_dset, batch_size, shuffle=True, num_workers=1)
eval_loader = DataLoader(eval_dset, batch_size, shuffle=True, num_workers=1)
train(model, train_loader, eval_loader, args.epochs, args.output)