-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathX509ExtendedTrustManager.java
234 lines (226 loc) · 12 KB
/
X509ExtendedTrustManager.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
/*
* Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package javax.net.ssl;
import java.net.Socket;
import javax.net.ssl.X509TrustManager;
import java.security.cert.X509Certificate;
import java.security.cert.CertificateException;
/**
* Extensions to the <code>X509TrustManager</code> interface to support
* SSL/TLS connection sensitive trust management.
* <p>
* To prevent man-in-the-middle attacks, hostname checks can be done
* to verify that the hostname in an end-entity certificate matches the
* targeted hostname. TLS does not require such checks, but some protocols
* over TLS (such as HTTPS) do. In earlier versions of the JDK, the
* certificate chain checks were done at the SSL/TLS layer, and the hostname
* verification checks were done at the layer over TLS. This class allows
* for the checking to be done during a single call to this class.
* <p>
* RFC 2830 defines the server identification specification for the "LDAPS"
* algorithm. RFC 2818 defines both the server identification and the
* client identification specification for the "HTTPS" algorithm.
*
* @see X509TrustManager
* @see HostnameVerifier
*
* @since 1.7
*/
public abstract class X509ExtendedTrustManager implements X509TrustManager {
/**
* Given the partial or complete certificate chain provided by the
* peer, build and validate the certificate path based on the
* authentication type and ssl parameters.
* <p>
* The authentication type is determined by the actual certificate
* used. For instance, if RSAPublicKey is used, the authType
* should be "RSA". Checking is case-sensitive.
* <p>
* If the <code>socket</code> parameter is an instance of
* {@link javax.net.ssl.SSLSocket}, and the endpoint identification
* algorithm of the <code>SSLParameters</code> is non-empty, to prevent
* man-in-the-middle attacks, the address that the <code>socket</code>
* connected to should be checked against the peer's identity presented
* in the end-entity X509 certificate, as specified in the endpoint
* identification algorithm.
* <p>
* If the <code>socket</code> parameter is an instance of
* {@link javax.net.ssl.SSLSocket}, and the algorithm constraints of the
* <code>SSLParameters</code> is non-null, for every certificate in the
* certification path, fields such as subject public key, the signature
* algorithm, key usage, extended key usage, etc. need to conform to the
* algorithm constraints in place on this socket.
*
* @param chain the peer certificate chain
* @param authType the key exchange algorithm used
* @param socket the socket used for this connection. This parameter
* can be null, which indicates that implementations need not check
* the ssl parameters
* @throws IllegalArgumentException if null or zero-length array is passed
* in for the <code>chain</code> parameter or if null or zero-length
* string is passed in for the <code>authType</code> parameter
* @throws CertificateException if the certificate chain is not trusted
* by this TrustManager
*
* @see SSLParameters#getEndpointIdentificationAlgorithm
* @see SSLParameters#setEndpointIdentificationAlgorithm(String)
* @see SSLParameters#getAlgorithmConstraints
* @see SSLParameters#setAlgorithmConstraints(AlgorithmConstraints)
*/
public abstract void checkClientTrusted(X509Certificate[] chain,
String authType, Socket socket) throws CertificateException;
/**
* Given the partial or complete certificate chain provided by the
* peer, build and validate the certificate path based on the
* authentication type and ssl parameters.
* <p>
* The authentication type is the key exchange algorithm portion
* of the cipher suites represented as a String, such as "RSA",
* "DHE_DSS". Note: for some exportable cipher suites, the key
* exchange algorithm is determined at run time during the
* handshake. For instance, for TLS_RSA_EXPORT_WITH_RC4_40_MD5,
* the authType should be RSA_EXPORT when an ephemeral RSA key is
* used for the key exchange, and RSA when the key from the server
* certificate is used. Checking is case-sensitive.
* <p>
* If the <code>socket</code> parameter is an instance of
* {@link javax.net.ssl.SSLSocket}, and the endpoint identification
* algorithm of the <code>SSLParameters</code> is non-empty, to prevent
* man-in-the-middle attacks, the address that the <code>socket</code>
* connected to should be checked against the peer's identity presented
* in the end-entity X509 certificate, as specified in the endpoint
* identification algorithm.
* <p>
* If the <code>socket</code> parameter is an instance of
* {@link javax.net.ssl.SSLSocket}, and the algorithm constraints of the
* <code>SSLParameters</code> is non-null, for every certificate in the
* certification path, fields such as subject public key, the signature
* algorithm, key usage, extended key usage, etc. need to conform to the
* algorithm constraints in place on this socket.
*
* @param chain the peer certificate chain
* @param authType the key exchange algorithm used
* @param socket the socket used for this connection. This parameter
* can be null, which indicates that implementations need not check
* the ssl parameters
* @throws IllegalArgumentException if null or zero-length array is passed
* in for the <code>chain</code> parameter or if null or zero-length
* string is passed in for the <code>authType</code> parameter
* @throws CertificateException if the certificate chain is not trusted
* by this TrustManager
*
* @see SSLParameters#getEndpointIdentificationAlgorithm
* @see SSLParameters#setEndpointIdentificationAlgorithm(String)
* @see SSLParameters#getAlgorithmConstraints
* @see SSLParameters#setAlgorithmConstraints(AlgorithmConstraints)
*/
public abstract void checkServerTrusted(X509Certificate[] chain,
String authType, Socket socket) throws CertificateException;
/**
* Given the partial or complete certificate chain provided by the
* peer, build and validate the certificate path based on the
* authentication type and ssl parameters.
* <p>
* The authentication type is determined by the actual certificate
* used. For instance, if RSAPublicKey is used, the authType
* should be "RSA". Checking is case-sensitive.
* <p>
* If the <code>engine</code> parameter is available, and the endpoint
* identification algorithm of the <code>SSLParameters</code> is
* non-empty, to prevent man-in-the-middle attacks, the address that
* the <code>engine</code> connected to should be checked against
* the peer's identity presented in the end-entity X509 certificate,
* as specified in the endpoint identification algorithm.
* <p>
* If the <code>engine</code> parameter is available, and the algorithm
* constraints of the <code>SSLParameters</code> is non-null, for every
* certificate in the certification path, fields such as subject public
* key, the signature algorithm, key usage, extended key usage, etc.
* need to conform to the algorithm constraints in place on this engine.
*
* @param chain the peer certificate chain
* @param authType the key exchange algorithm used
* @param engine the engine used for this connection. This parameter
* can be null, which indicates that implementations need not check
* the ssl parameters
* @throws IllegalArgumentException if null or zero-length array is passed
* in for the <code>chain</code> parameter or if null or zero-length
* string is passed in for the <code>authType</code> parameter
* @throws CertificateException if the certificate chain is not trusted
* by this TrustManager
*
* @see SSLParameters#getEndpointIdentificationAlgorithm
* @see SSLParameters#setEndpointIdentificationAlgorithm(String)
* @see SSLParameters#getAlgorithmConstraints
* @see SSLParameters#setAlgorithmConstraints(AlgorithmConstraints)
*/
public abstract void checkClientTrusted(X509Certificate[] chain,
String authType, SSLEngine engine) throws CertificateException;
/**
* Given the partial or complete certificate chain provided by the
* peer, build and validate the certificate path based on the
* authentication type and ssl parameters.
* <p>
* The authentication type is the key exchange algorithm portion
* of the cipher suites represented as a String, such as "RSA",
* "DHE_DSS". Note: for some exportable cipher suites, the key
* exchange algorithm is determined at run time during the
* handshake. For instance, for TLS_RSA_EXPORT_WITH_RC4_40_MD5,
* the authType should be RSA_EXPORT when an ephemeral RSA key is
* used for the key exchange, and RSA when the key from the server
* certificate is used. Checking is case-sensitive.
* <p>
* If the <code>engine</code> parameter is available, and the endpoint
* identification algorithm of the <code>SSLParameters</code> is
* non-empty, to prevent man-in-the-middle attacks, the address that
* the <code>engine</code> connected to should be checked against
* the peer's identity presented in the end-entity X509 certificate,
* as specified in the endpoint identification algorithm.
* <p>
* If the <code>engine</code> parameter is available, and the algorithm
* constraints of the <code>SSLParameters</code> is non-null, for every
* certificate in the certification path, fields such as subject public
* key, the signature algorithm, key usage, extended key usage, etc.
* need to conform to the algorithm constraints in place on this engine.
*
* @param chain the peer certificate chain
* @param authType the key exchange algorithm used
* @param engine the engine used for this connection. This parameter
* can be null, which indicates that implementations need not check
* the ssl parameters
* @throws IllegalArgumentException if null or zero-length array is passed
* in for the <code>chain</code> parameter or if null or zero-length
* string is passed in for the <code>authType</code> parameter
* @throws CertificateException if the certificate chain is not trusted
* by this TrustManager
*
* @see SSLParameters#getEndpointIdentificationAlgorithm
* @see SSLParameters#setEndpointIdentificationAlgorithm(String)
* @see SSLParameters#getAlgorithmConstraints
* @see SSLParameters#setAlgorithmConstraints(AlgorithmConstraints)
*/
public abstract void checkServerTrusted(X509Certificate[] chain,
String authType, SSLEngine engine) throws CertificateException;
}