forked from inQWIRE/QuantumLib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
FiniteGroups.v
768 lines (636 loc) · 22.4 KB
/
FiniteGroups.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
Require Import List.
Require Import Prelim.
Require Import Summation.
Require Import FinFun.
Require Import ListDec.
Require Import Setoid.
(* two important list functions used are NoDup and incl *)
(* in the following sections, we expand on these list functions *)
Global Program Instance list_is_monoid {X} : Monoid (list X) :=
{ Gzero := []
; Gplus := @app X
}.
Next Obligation. rewrite app_nil_end; easy. Qed.
Next Obligation. rewrite app_assoc; easy. Qed.
Lemma big_sum_list_length : forall {X} (l : list (list X)) (l' : list X),
G_big_plus l = l' -> G_big_plus (map (@length X) l) = length l'.
Proof. induction l.
- intros.
destruct l'; easy.
- intros.
simpl in *; subst.
rewrite app_length, (IHl (G_big_plus l)); easy.
Qed.
Lemma length_big_sum_list : forall {X} (l : list (list X)),
length (G_big_plus l) = G_big_plus (map (@length X) l).
Proof. intros.
rewrite (big_sum_list_length _ (G_big_plus l)); easy.
Qed.
Lemma In_big_sum_list_In_part : forall {X} (l : list (list X)) (x : X),
In x (G_big_plus l) ->
exists l1, In l1 l /\ In x l1.
Proof. induction l.
- easy.
- intros.
simpl in H; apply in_app_or in H.
destruct H.
exists a; split; try left; easy.
apply IHl in H.
destruct H as [l1 [H H0]].
exists l1; split.
right; easy.
easy.
Qed.
Lemma In_part_In_big_sum_list : forall {X} (l : list (list X)) (x : X),
(exists l1, In l1 l /\ In x l1) ->
In x (G_big_plus l).
Proof. induction l.
- intros.
destruct H; easy.
- intros.
destruct H as [l1 [H H0]].
destruct H; subst.
simpl; apply in_or_app; left; easy.
simpl; apply in_or_app; right.
apply IHl.
exists l1.
easy.
Qed.
Inductive eq_mod_perm {X} (l1 l2 : list X) : Prop :=
| eq_list : NoDup l1 -> NoDup l2 -> incl l1 l2 -> incl l2 l1 -> eq_mod_perm l1 l2.
Infix "⩦" := eq_mod_perm (at level 70).
Definition disjoint {X} (l1 l2 : list X) : Prop := NoDup (l1 ++ l2).
Lemma In_EMP_compat : forall {X} (l1 l2 : list X) (x : X),
l1 ⩦ l2 -> (iff (In x l1) (In x l2)).
Proof. intros; split; intros; inversion H.
apply H3; easy.
apply H4; easy.
Qed.
Add Parametric Morphism {X} : (@In X)
with signature eq ==> eq_mod_perm ==> iff as Pplusf_mor.
Proof. intros x l1 l2 H.
apply In_EMP_compat; easy.
Qed.
Lemma NoDup_app : forall {X} (l1 l2 : list X),
NoDup l1 -> NoDup l2 ->
(forall x, In x l1 -> ~ (In x l2)) ->
NoDup (l1 ++ l2).
Proof. induction l1; intros.
- easy.
- simpl; apply NoDup_cons.
unfold not; intros; apply (H1 a); try (left; easy).
apply in_app_or in H2.
destruct H2; auto.
inversion H; easy.
apply IHl1; auto.
inversion H; auto.
intros.
apply H1; right; easy.
Qed.
Lemma length_lt_new_elem : forall {X} (l2 l1 : list X)
(eq_dec : forall x y : X, {x = y} + {x <> y}),
length l1 < length l2 ->
NoDup l2 ->
exists x, In x l2 /\ ~ (In x l1).
Proof. induction l2; intros.
- destruct l1; try easy.
- destruct (In_dec eq_dec a l1); simpl in *.
apply (remove_length_lt eq_dec l1 a) in i.
assert (H' : length (remove eq_dec a l1) < length l2). lia.
apply IHl2 in H'; auto.
destruct H' as [x [H1 H2]].
exists x; split.
right; easy.
unfold not; intros; apply H2.
apply in_in_remove; auto.
destruct (eq_dec x a); auto; subst.
inversion H0; easy.
inversion H0; easy.
exists a; split; auto.
Qed.
Lemma length_gt_EMP : forall {X} (l1 l2 : list X),
NoDup l1 -> NoDup l2 ->
incl l1 l2 ->
length l1 >= length l2 ->
l1 ⩦ l2.
Proof. intros.
split; auto.
apply NoDup_length_incl; auto; lia.
Qed.
Lemma EMP_reduce : forall {X} (l1 l21 l22 : list X) (a : X),
(a :: l1) ⩦ (l21 ++ (a::l22)) -> l1 ⩦ (l21 ++ l22).
Proof. intros; inversion H.
apply eq_list.
apply NoDup_cons_iff in H0; easy.
apply NoDup_remove_1 in H1; easy.
unfold incl; intros.
apply NoDup_cons_iff in H0.
destruct H0.
assert (H4' := H4).
apply (in_cons a) in H4.
apply H2 in H4.
apply in_or_app; apply in_app_or in H4.
destruct H4; try (left; easy).
destruct H4; subst.
easy.
right; easy.
unfold incl; intros.
assert (H' : In a0 (a :: l1)).
{ apply H3.
apply in_or_app; apply in_app_or in H4.
destruct H4; try (left; easy).
right; right; easy. }
destruct H'; try easy.
apply NoDup_remove_2 in H1.
subst; easy.
Qed.
Lemma EMP_eq_length : forall {X} (l1 l2 : list X),
l1 ⩦ l2 -> length l1 = length l2.
Proof. induction l1; intros; inversion H.
- apply incl_l_nil in H3; subst; easy.
- destruct (in_split a l2) as [l21 [l22 H4]].
apply H2; left; easy.
subst.
apply EMP_reduce in H.
apply IHl1 in H.
rewrite app_length; simpl.
rewrite Nat.add_succ_r; apply eq_S.
rewrite <- app_length.
easy.
Qed.
(* Could work, but needs eq decidability
Lemma eq_length_gives_map : forall {X} (h : decidable_eq X) (l1 l2 : list X),
NoDup l1 -> NoDup l2 -> length l1 = length l2 ->
exists f, Bijective f /\ map f l2 = l1.
Proof. induction l1.
- intros; destruct l2; try easy; simpl.
exists (fun a => a); split; auto.
unfold Bijective; intros.
exists (fun a => a); easy.
- intros.
destruct l2; try easy.
simpl in *.
apply Nat.succ_inj in H1.
apply NoDup_cons_iff in H; apply NoDup_cons_iff in H0.
apply IHl1 in H1; try easy.
destruct H1 as [f [H1 H2]].
exists (fun b => match b with
| x => a
| _ => f b
end).
*)
(* quick little lemma useing FinFun's Listing *)
Lemma list_rep_length_eq : forall {X} (l1 l2 : list X),
Listing l1 -> Listing l2 -> length l1 = length l2.
Proof. intros.
destruct H; destruct H0.
apply Nat.le_antisymm; apply NoDup_incl_length; auto; unfold incl; intros.
apply H2.
apply H1.
Qed.
(* testing for NoDup tactic, to be developted... *)
Lemma test : NoDup [1;2;3;4;5]%nat.
Proof. repeat (apply NoDup_cons; unfold not; intros; repeat (destruct H; try lia)).
apply NoDup_nil.
Qed.
(* TODO: figure out how to get rid of Geq_dec - it is already in Summation.v for rings *)
(* shouldn't equality on finite types be decidable? *)
Class FiniteGroup G `{Group G} :=
{ G_list_rep : list G
; G_finite_ver : Listing G_list_rep
; Geq_dec : forall g h : G, { g = h } + { g <> h }
}.
Infix "·" := Gplus (at level 40) : group_scope.
Definition group_size G `{FiniteGroup G} := length G_list_rep.
Lemma group_size_gt_0 : forall G `{FiniteGroup G},
group_size G > 0.
Proof. intros.
assert (H' : In 0 G_list_rep).
{ apply G_finite_ver. }
unfold group_size.
destruct G_list_rep; try easy; simpl; lia.
Qed.
Lemma finitegroup_finite : forall G `{FiniteGroup G},
Finite' G.
Proof. intros.
unfold Finite'.
exists G_list_rep.
apply G_finite_ver.
Qed.
Lemma Gplus_injective : forall G `{Group G} (g : G),
Injective (Gplus g).
Proof. intros.
unfold Injective; intros.
apply Gplus_cancel_l in H1; easy.
Qed.
Lemma Gplus_surjective : forall G `{Group G} (g : G),
Surjective (Gplus g).
Proof. intros.
unfold Surjective; intros.
exists (Gopp g · y).
rewrite Gplus_assoc, Gopp_r, Gplus_0_l; easy.
Qed.
Lemma mul_by_g_perm : forall G `{FiniteGroup G} (g : G),
Listing (map (Gplus g) G_list_rep).
Proof. intros.
destruct G_finite_ver.
split.
- apply Injective_map_NoDup; auto.
apply Gplus_injective.
inversion H1; easy.
- intros.
unfold Full; intros.
replace a with (g · ((Gopp g) · a)).
apply in_map; apply H3.
rewrite Gplus_assoc, Gopp_r, Gplus_0_l; easy.
Qed.
(* defining homomorphisms between groups *)
(* it would be quite nice to change the order of the inputs here, mirroring f : G -> H *)
Definition group_homomorphism (H G : Type) `{FiniteGroup H} `{FiniteGroup G} (f : H -> G) : Prop :=
forall x1 x2, f (x1 · x2) = f x1 · f x2.
Definition inclusion_map (H G : Type) `{FiniteGroup H} `{FiniteGroup G} (f : H -> G) : Prop :=
Injective f /\ group_homomorphism H G f.
Definition sub_group (H G : Type) `{FiniteGroup H} `{FiniteGroup G} : Prop :=
exists f, inclusion_map H G f.
Lemma homo_id : forall H G `{FiniteGroup H} `{FiniteGroup G} (f : H -> G),
group_homomorphism H G f -> f 0 = 0.
Proof. intros.
apply (Gplus_cancel_l (f 0) 0 (f 0)).
rewrite Gplus_0_r, <- H6, Gplus_0_r.
easy.
Qed.
Lemma homo_inv : forall H G `{FiniteGroup H} `{FiniteGroup G} (f : H -> G) (h : H),
group_homomorphism H G f -> f (- h) = - (f h).
Proof. intros.
apply (Gplus_cancel_l _ _ (f h)).
rewrite Gopp_r, <- H6, Gopp_r.
apply homo_id in H6.
easy.
Qed.
Lemma sub_group_closed_under_inv : forall H G `{FiniteGroup H} `{FiniteGroup G} (f : H -> G) (a : G),
inclusion_map H G f ->
In a (map f G_list_rep) -> In (- a) (map f G_list_rep).
Proof. intros.
apply in_map_iff in H7; destruct H7 as [x [H7 H8]].
apply in_map_iff.
exists (-x); split.
rewrite <- H7; apply (homo_inv H G).
inversion H6; easy.
apply G_finite_ver.
Qed.
Lemma sub_group_closed_under_mul : forall H G `{FiniteGroup H} `{FiniteGroup G} (f : H -> G) (a b : G),
inclusion_map H G f ->
In a (map f G_list_rep) -> In b (map f G_list_rep) ->
In (a · b) (map f G_list_rep).
Proof. intros.
apply in_map_iff in H7; destruct H7 as [xa [H7 H9]].
apply in_map_iff in H8; destruct H8 as [xb [H8 H10]].
apply in_map_iff.
exists (xa · xb); split.
inversion H6.
rewrite H12; subst; easy.
apply G_finite_ver.
Qed.
Lemma in_own_coset : forall H G `{FiniteGroup H} `{FiniteGroup G} (f : H -> G) (a : G),
inclusion_map H G f ->
In a (map (Gplus a) (map f G_list_rep)).
Proof. intros.
rewrite map_map.
apply in_map_iff.
exists 0; split.
erewrite homo_id, Gplus_0_r; auto.
inversion H6; easy.
apply G_finite_ver.
Qed.
Lemma in_coset_cancel : forall H G `{FiniteGroup H} `{FiniteGroup G} (f : H -> G) (a b : G),
inclusion_map H G f ->
In a (map (Gplus b) (map f G_list_rep)) <-> In ((- b) · a) (map f G_list_rep).
Proof. split; intros.
- rewrite map_map in H7.
apply in_map_iff in H7; destruct H7 as [x [H7 H8]].
apply in_map_iff.
exists x; split; auto.
rewrite <- H7; solve_group.
- rewrite map_map.
apply in_map_iff in H7; destruct H7 as [x [H7 H8]].
apply in_map_iff.
exists x; split; auto.
rewrite H7; solve_group.
Qed.
Lemma cosets_same1 : forall H G `{FiniteGroup H} `{FiniteGroup G} (f : H -> G) (a b : G),
inclusion_map H G f ->
(exists x, In x (map (Gplus a) (map f G_list_rep)) /\ In x (map (Gplus b) (map f G_list_rep))) ->
(map (Gplus a) (map f G_list_rep)) ⩦ (map (Gplus b) (map f G_list_rep)).
Proof. intros.
destruct H7 as [x [H7 H8]].
rewrite map_map in H7, H8.
apply in_map_iff in H7; apply in_map_iff in H8.
destruct H7 as [xa [H7 H9]].
destruct H8 as [xb [H8 H10]].
apply eq_list.
all : repeat (try apply Injective_map_NoDup; try apply Gplus_injective);
inversion H2; auto.
all : try (destruct H6; easy); try apply G_finite_ver.
- repeat rewrite map_map.
unfold incl; intros.
apply in_map_iff in H11; destruct H11 as [a1 [H11 H12]].
apply in_map_iff; subst.
exists ((xb · - xa) · a1); split; try apply G_finite_ver.
apply (Gplus_cancel_l _ _ (Gopp b)).
apply (f_equal (Gplus (Gopp b))) in H8.
rewrite Gplus_assoc, Gopp_l, Gplus_0_l, Gplus_assoc in *.
apply (f_equal (fun g => g · (Gopp (f xa)))) in H8.
rewrite <- Gplus_assoc, Gopp_r, Gplus_0_r in H8.
inversion H6; subst.
rewrite <- H8, <- (homo_inv _ _ _ xa); auto.
do 2 rewrite <- H11.
inversion H6; easy.
- repeat rewrite map_map.
unfold incl; intros.
apply in_map_iff in H11; destruct H11 as [a1 [H11 H12]].
apply in_map_iff; subst.
exists ((xa · - xb) · a1); split; try apply G_finite_ver.
apply (Gplus_cancel_l _ _ (Gopp a)).
apply (f_equal (Gplus (Gopp a))) in H8.
rewrite (Gplus_assoc _ a), Gopp_l, Gplus_0_l, Gplus_assoc in *.
apply (f_equal (fun g => g · (Gopp (f xb)))) in H8.
rewrite <- Gplus_assoc, Gopp_r, Gplus_0_r in H8.
inversion H6; subst.
rewrite H8, <- (homo_inv _ _ _ xb); auto.
do 2 rewrite <- H11.
inversion H6; easy.
Qed.
Lemma cosets_same2 : forall H G `{FiniteGroup H} `{FiniteGroup G} (f : H -> G) (a b : G),
inclusion_map H G f ->
(In b (map (Gplus a) (map f G_list_rep))) ->
(map (Gplus a) (map f G_list_rep)) ⩦ (map (Gplus b) (map f G_list_rep)).
Proof. intros.
apply (cosets_same1 _ _ _ a b); auto.
exists b; split; auto.
apply (in_own_coset _ _ _ b); auto.
Qed.
Lemma cosets_diff : forall H G `{FiniteGroup H} `{FiniteGroup G} (f : H -> G) (a b : G),
inclusion_map H G f ->
~ (In b (map (Gplus a) (map f G_list_rep))) ->
NoDup ((map (Gplus a) (map f G_list_rep)) ++ (map (Gplus b) (map f G_list_rep))).
Proof. intros.
inversion H6; subst.
apply NoDup_app.
all : repeat (try apply Injective_map_NoDup; try apply Gplus_injective); auto.
all : try (apply G_finite_ver).
intros.
unfold not; intros; apply H7.
apply (In_EMP_compat _ (map (Gplus b) (map f G_list_rep))).
apply (cosets_same1 _ _ _ a b H6); auto.
exists x; split; easy.
apply (in_own_coset _ _ _ b); auto.
Qed.
(*
Ltac lfa (
lfa H. instead, assert F is a field, use tactic, then prove assertion.
Put all in Ltac. use frech H, etc... like in prep_mat_eq
instead of
`assert (H : field G) by auto`,
do
let H := fresh “H” in assert ...
... clear H
*)
(* how do I avoid having to state list_monoid_G here? *)
Definition coset_rep_list_to_cosets H G `{FiniteGroup H} `{FiniteGroup G}
(f : H -> G) (l : list G) : list G :=
(G_big_plus (map (fun g => map (Gplus g) (map f G_list_rep)) l)).
Lemma extend_coset_rep_list : forall H G `{FiniteGroup H} `{FiniteGroup G} (f : H -> G) (l : list G),
inclusion_map H G f ->
NoDup (coset_rep_list_to_cosets H G f l) ->
length (coset_rep_list_to_cosets H G f l) < group_size G ->
exists g, NoDup (coset_rep_list_to_cosets H G f (g::l)).
Proof. intros.
apply length_lt_new_elem in H8.
destruct H8 as [x [H8 H9]].
exists x; unfold coset_rep_list_to_cosets; simpl.
apply NoDup_app.
repeat (try apply Injective_map_NoDup; try apply Gplus_injective);
inversion H6; auto; apply G_finite_ver.
apply H7.
intros.
unfold not; intros; apply H9.
unfold coset_rep_list_to_cosets.
apply In_big_sum_list_In_part in H11.
destruct H11 as [l1 [H11 H12]].
apply (in_coset_cancel H G) in H10; auto.
apply in_map_iff in H11.
destruct H11 as [a [H11 H13]]; subst.
apply (in_coset_cancel H G) in H12; auto.
apply (sub_group_closed_under_inv H G) in H10; auto.
rewrite Gopp_plus_distr, Gopp_involutive in H10.
apply (sub_group_closed_under_mul H G f (- a · x0) (- x0 · x)) in H10; auto.
rewrite Gplus_assoc, <- (Gplus_assoc _ x0), Gopp_r, Gplus_0_r in H10.
apply In_part_In_big_sum_list.
exists (map (Gplus a) (map f G_list_rep)); split.
apply in_map_iff.
exists a; split; easy.
apply (in_coset_cancel H G); auto.
apply Geq_dec.
apply G_finite_ver.
Qed.
Lemma length_cosets : forall H G `{FiniteGroup H} `{FiniteGroup G} (f : H -> G) (l : list G),
inclusion_map H G f ->
length (coset_rep_list_to_cosets H G f l) = (group_size H * length l)%nat.
Proof. intros.
unfold coset_rep_list_to_cosets.
rewrite length_big_sum_list.
rewrite (big_plus_constant _ (group_size H)).
rewrite times_n_nat, map_map, map_length; easy.
intros.
rewrite map_map in H7.
apply in_map_iff in H7; destruct H7 as [x [H7 H8]]; subst.
rewrite map_map, map_length; easy.
Qed.
Lemma get_coset_rep_list1 : forall H G `{FiniteGroup H} `{FiniteGroup G} (f : H -> G) (n : nat),
inclusion_map H G f ->
group_size H * n <= group_size G ->
exists l, length l = n /\ NoDup (coset_rep_list_to_cosets H G f l).
Proof. induction n.
- intros.
exists []; split; try easy.
unfold coset_rep_list_to_cosets; simpl.
apply NoDup_nil.
- intros.
assert (H8 : group_size H * n < group_size G).
{ assert (H' := group_size_gt_0 H). lia. }
assert (H9 := H6).
apply IHn in H9; try lia.
destruct H9 as [l [H9 H10]].
apply (extend_coset_rep_list H G) in H10; auto.
destruct H10 as [g H10].
exists (g :: l); split; simpl; try lia; auto.
rewrite length_cosets; subst; easy.
Qed.
Lemma get_coset_rep_list2 : forall H G `{FiniteGroup H} `{FiniteGroup G} (f : H -> G),
inclusion_map H G f ->
exists l, group_size H * length l >= group_size G /\ NoDup (coset_rep_list_to_cosets H G f l).
Proof. intros.
destruct (get_coset_rep_list1 H G f (group_size G / group_size H)%nat) as [l [H7 H8]]; auto.
apply Nat.mul_div_le.
assert (H' := group_size_gt_0 H). lia.
bdestruct (group_size H * length l <? group_size G).
- destruct (extend_coset_rep_list H G f l) as [g H10]; auto.
rewrite length_cosets; auto.
exists (g :: l); split; auto.
simpl; rewrite H7.
assert (H' := group_size_gt_0 H).
assert (H'' : group_size H <> 0).
destruct (group_size H); try easy.
apply (Nat.mul_succ_div_gt (group_size G) (group_size H)) in H''.
lia.
- exists l; split; easy.
Qed.
Lemma get_full_coset_reps1 : forall H G `{FiniteGroup H} `{FiniteGroup G} (f : H -> G),
inclusion_map H G f ->
exists (l : list G), (coset_rep_list_to_cosets H G f l) ⩦ G_list_rep.
Proof. intros.
destruct (get_coset_rep_list2 H G f) as [l [H7 H8]]; auto.
exists l.
apply length_gt_EMP; auto.
apply G_finite_ver.
unfold incl; intros; apply G_finite_ver.
rewrite length_cosets; easy.
Qed.
Theorem Lagranges_Theorem : forall H G `{FiniteGroup H} `{FiniteGroup G} (f : H -> G),
inclusion_map H G f ->
exists d, (group_size H * d)%nat = group_size G.
Proof. intros.
destruct (get_full_coset_reps1 H G f) as [l H7]; auto.
exists (length l).
rewrite <- (length_cosets H G f); auto.
unfold group_size.
apply EMP_eq_length.
easy.
Qed.
(*
n
Lemma cosets_add : forall H G `{FiniteGroup H} `{FiniteGroup G} (f : H -> G) (l : list G) (a : G),
inclusion_map H G f -> ~ (In a (G_big_plus (map (fun b -> map (Gplus b) (map f G_list_rep))))) ->
*)
(* This is only true for abelian groups.
(* important lemma we are trying to prove *)
Lemma sum_of_elems_invr : forall G `{FiniteGroup G} (l1 l2 : list G),
list_rep G l1 -> list_rep G l2 -> G_big_plus l1 = G_big_plus l2.
*)
(**********************************)
(* Some examples of finite groups *)
(**********************************)
Inductive Quaternion :=
| p_1
| n_1
| p_i
| n_i
| p_j
| n_j
| p_k
| n_k.
Definition quatNeg (q : Quaternion) : Quaternion :=
match q with
| p_1 => n_1
| n_1 => p_1
| p_i => n_i
| n_i => p_i
| p_j => n_j
| n_j => p_j
| p_k => n_k
| n_k => p_k
end.
Definition quatInv (q : Quaternion) : Quaternion :=
match q with
| p_1 => p_1
| n_1 => n_1
| p_i => n_i
| n_i => p_i
| p_j => n_j
| n_j => p_j
| p_k => n_k
| n_k => p_k
end.
Lemma quatNeg_inv : forall (q : Quaternion), quatNeg (quatNeg q) = q.
Proof. destruct q; easy.
Qed.
Lemma quatInv_inv : forall (q : Quaternion), quatInv (quatInv q) = q.
Proof. destruct q; easy.
Qed.
(* could split this up into multiple functions like in Types.v, but would overcomplicate *)
Definition quatMul (q1 q2 : Quaternion) : Quaternion :=
match (q1, q2) with
| (p_1, _) => q2
| (_, p_1) => q1
| (n_1, _) => quatNeg q2
| (_, n_1) => quatNeg q1
| (p_i, p_i) => n_1
| (p_i, n_i) => p_1
| (p_i, p_j) => p_k
| (p_i, n_j) => n_k
| (p_i, p_k) => n_j
| (p_i, n_k) => p_j
| (n_i, p_i) => p_1
| (n_i, n_i) => n_1
| (n_i, p_j) => n_k
| (n_i, n_j) => p_k
| (n_i, p_k) => p_j
| (n_i, n_k) => n_j
| (p_j, p_i) => n_k
| (p_j, n_i) => p_k
| (p_j, p_j) => n_1
| (p_j, n_j) => p_1
| (p_j, p_k) => p_i
| (p_j, n_k) => n_i
| (n_j, p_i) => p_k
| (n_j, n_i) => n_k
| (n_j, p_j) => p_1
| (n_j, n_j) => n_1
| (n_j, p_k) => n_i
| (n_j, n_k) => p_i
| (p_k, p_i) => p_j
| (p_k, n_i) => n_j
| (p_k, p_j) => n_i
| (p_k, n_j) => p_i
| (p_k, p_k) => n_1
| (p_k, n_k) => p_1
| (n_k, p_i) => n_j
| (n_k, n_i) => p_j
| (n_k, p_j) => p_i
| (n_k, n_j) => n_i
| (n_k, p_k) => p_1
| (n_k, n_k) => n_1
end.
Global Program Instance quat_is_monoid : Monoid Quaternion :=
{ Gzero := p_1
; Gplus := quatMul
}.
Solve All Obligations with program_simpl; destruct g; try easy; destruct h; destruct i; easy.
Global Program Instance quat_is_group : Group Quaternion :=
{ Gopp := quatInv }.
Solve All Obligations with program_simpl; destruct g; try easy.
Lemma quatMul_comm : forall (q1 q2 : Quaternion),
q1 · q2 = q2 · q1 \/ q1 · q2 = quatNeg (q2 · q1).
Proof. intros.
destruct q1;
destruct q2;
try (left; easy); try (right; easy).
Qed.
Definition quat_list : list Quaternion := [p_1; p_i; p_j; p_k; n_1; n_i; n_j; n_k].
Global Program Instance quat_is_finitegroup : FiniteGroup Quaternion :=
{ G_list_rep := quat_list
}.
Next Obligation.
Proof. split.
- repeat (apply NoDup_cons; unfold not; intros;
repeat (destruct H; try easy)).
apply NoDup_nil.
- unfold Full; intros.
destruct a; simpl;
repeat (try (left; easy); right).
Qed.
Next Obligation.
Proof. destruct g; destruct h; try (left; easy); right; easy. Qed.
(* **)
(***)
(****)