forked from declare-lab/tango
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
212 lines (176 loc) · 7.92 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import os
import copy
import json
import time
import torch
import argparse
import soundfile as sf
import wandb
from tqdm import tqdm
from diffusers import DDPMScheduler
from audioldm_eval import EvaluationHelper
from models import build_pretrained_models, AudioDiffusion
from transformers import AutoProcessor, ClapModel
import torchaudio
from tango import Tango
class dotdict(dict):
"""dot.notation access to dictionary attributes"""
__getattr__ = dict.get
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
def chunks(lst, n):
"""Yield successive n-sized chunks from lst."""
for i in range(0, len(lst), n):
yield lst[i:i + n]
def parse_args():
parser = argparse.ArgumentParser(description="Inference for text to audio generation task.")
parser.add_argument(
"--original_args", type=str, default=None,
help="Path for summary jsonl file saved during training."
)
parser.add_argument(
"--model", type=str, default=None,
help="Path for saved model bin file."
)
parser.add_argument(
"--test_file", type=str, default="data/test_audiocaps_subset.json",
help="json file containing the test prompts for generation."
)
parser.add_argument(
"--text_key", type=str, default="captions",
help="Key containing the text in the json file."
)
parser.add_argument(
"--test_references", type=str, default="data/audiocaps_test_references/subset",
help="Folder containing the test reference wav files."
)
parser.add_argument(
"--num_steps", type=int, default=200,
help="How many denoising steps for generation.",
)
parser.add_argument(
"--guidance", type=float, default=3,
help="Guidance scale for classifier free guidance."
)
parser.add_argument(
"--batch_size", type=int, default=8,
help="Batch size for generation.",
)
parser.add_argument(
"--num_samples", type=int, default=1,
help="How many samples per prompt.",
)
parser.add_argument(
"--num_test_instances", type=int, default=-1,
help="How many test instances to evaluate.",
)
args = parser.parse_args()
return args
def main():
args = parse_args()
train_args = dotdict(json.loads(open(args.original_args).readlines()[0]))
if "hf_model" not in train_args:
train_args["hf_model"] = None
# Load Models #
if train_args.hf_model:
tango = Tango(train_args.hf_model, "cpu")
vae, stft, model = tango.vae.cuda(), tango.stft.cuda(), tango.model.cuda()
else:
name = "audioldm-s-full"
vae, stft = build_pretrained_models(name)
vae, stft = vae.cuda(), stft.cuda()
model = AudioDiffusion(
train_args.text_encoder_name, train_args.scheduler_name, train_args.unet_model_name, train_args.unet_model_config, train_args.snr_gamma
).cuda()
model.eval()
# Load Trained Weight #
device = vae.device()
model.load_state_dict(torch.load(args.model))
scheduler = DDPMScheduler.from_pretrained(train_args.scheduler_name, subfolder="scheduler")
evaluator = EvaluationHelper(16000, "cuda:0")
if args.num_samples > 1:
clap = ClapModel.from_pretrained("laion/clap-htsat-unfused").to(device)
clap.eval()
clap_processor = AutoProcessor.from_pretrained("laion/clap-htsat-unfused")
wandb.init(project="Text to Audio Diffusion Evaluation")
def audio_text_matching(waveforms, text, sample_freq=16000, max_len_in_seconds=10):
new_freq = 48000
resampled = []
for wav in waveforms:
x = torchaudio.functional.resample(torch.tensor(wav, dtype=torch.float).reshape(1, -1), orig_freq=sample_freq, new_freq=new_freq)[0].numpy()
resampled.append(x[:new_freq*max_len_in_seconds])
inputs = clap_processor(text=text, audios=resampled, return_tensors="pt", padding=True, sampling_rate=48000)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = clap(**inputs)
logits_per_audio = outputs.logits_per_audio
ranks = torch.argsort(logits_per_audio.flatten(), descending=True).cpu().numpy()
return ranks
# Load Data #
if train_args.prefix:
prefix = train_args.prefix
else:
prefix = ""
text_prompts = [json.loads(line)[args.text_key] for line in open(args.test_file).readlines()]
text_prompts = [prefix + inp for inp in text_prompts]
if args.num_test_instances != - 1:
text_prompts = text_prompts[:args.num_test_instances]
# Generate #
num_steps, guidance, batch_size, num_samples = args.num_steps, args.guidance, args.batch_size, args.num_samples
all_outputs = []
for k in tqdm(range(0, len(text_prompts), batch_size)):
text = text_prompts[k: k+batch_size]
with torch.no_grad():
latents = model.inference(text, scheduler, num_steps, guidance, num_samples, disable_progress=True)
mel = vae.decode_first_stage(latents)
wave = vae.decode_to_waveform(mel)
all_outputs += [item for item in wave]
# Save #
exp_id = str(int(time.time()))
if not os.path.exists("outputs"):
os.makedirs("outputs")
if num_samples == 1:
output_dir = "outputs/{}_{}_steps_{}_guidance_{}".format(exp_id, "_".join(args.model.split("/")[1:-1]), num_steps, guidance)
os.makedirs(output_dir, exist_ok=True)
for j, wav in enumerate(all_outputs):
sf.write("{}/output_{}.wav".format(output_dir, j), wav, samplerate=16000)
result = evaluator.main(output_dir, args.test_references)
result["Steps"] = num_steps
result["Guidance Scale"] = guidance
result["Test Instances"] = len(text_prompts)
wandb.log(result)
result["scheduler_config"] = dict(scheduler.config)
result["args"] = dict(vars(args))
result["output_dir"] = output_dir
with open("outputs/summary.jsonl", "a") as f:
f.write(json.dumps(result) + "\n\n")
else:
for i in range(num_samples):
output_dir = "outputs/{}_{}_steps_{}_guidance_{}/rank_{}".format(exp_id, "_".join(args.model.split("/")[1:-1]), num_steps, guidance, i+1)
os.makedirs(output_dir, exist_ok=True)
groups = list(chunks(all_outputs, num_samples))
for k in tqdm(range(len(groups))):
wavs_for_text = groups[k]
rank = audio_text_matching(wavs_for_text, text_prompts[k])
ranked_wavs_for_text = [wavs_for_text[r] for r in rank]
for i, wav in enumerate(ranked_wavs_for_text):
output_dir = "outputs/{}_{}_steps_{}_guidance_{}/rank_{}".format(exp_id, "_".join(args.model.split("/")[1:-1]), num_steps, guidance, i+1)
sf.write("{}/output_{}.wav".format(output_dir, k), wav, samplerate=16000)
# Compute results for each rank #
for i in range(num_samples):
output_dir = "outputs/{}_{}_steps_{}_guidance_{}/rank_{}".format(exp_id, "_".join(args.model.split("/")[1:-1]), num_steps, guidance, i+1)
result = evaluator.main(output_dir, args.test_references)
result["Steps"] = num_steps
result["Guidance Scale"] = guidance
result["Instances"] = len(text_prompts)
result["clap_rank"] = i+1
wb_result = copy.deepcopy(result)
wb_result = {"{}_rank{}".format(k, i+1): v for k, v in wb_result.items()}
wandb.log(wb_result)
result["scheduler_config"] = dict(scheduler.config)
result["args"] = dict(vars(args))
result["output_dir"] = output_dir
with open("outputs/summary.jsonl", "a") as f:
f.write(json.dumps(result) + "\n\n")
if __name__ == "__main__":
main()