@@ -18,7 +18,7 @@ let getFreshVariable s =
18
18
(*
19
19
* implement a single step with reduction using the call-by-value strategy.
20
20
*)
21
- let rec stepv (e : Uml.exp ): Uml.exp =
21
+ let rec stepv (e : Uml.exp ): Uml.exp =
22
22
let rec substitute (vbef : Uml.exp ) (vaft : Uml.exp ) (expr : Uml.exp ): Uml.exp =
23
23
match expr with
24
24
| Var (x : Uml.var ) -> if x = (Inout. exp2string vbef) then vaft else expr (* Only when should be replaced: NOT in free var *)
@@ -33,17 +33,16 @@ let rec stepv (e: Uml.exp): Uml.exp =
33
33
| App (e1 , e2 : Uml.exp * Uml.exp ) -> freevar e1 @ freevar e2 (* Union of free variables of both expression *)
34
34
| Lam (x , e : Uml.var * Uml.exp ) -> List. filter (fun v -> x <> v) (freevar e) (* Free variable except x*)
35
35
in
36
- if List. mem x (freevar e ) then (* x in free-var space of expression, need to be 'a-subst *)
36
+ if List. mem x (freevar vaft ) then (* x in free-var space of expression, need to be 'a-subst *)
37
37
let fv = getFreshVariable x in
38
- let modify_e = substitute (Uml. Var x) (Uml. Var fv) e in
39
- Lam (fv, substitute vbef vaft modify_e) (* Subst. with fresh variable*)
40
- else (* No need to be 'a-subst-ed*)
38
+ Lam (fv, substitute vbef vaft (substitute (Uml. Var x) (Uml. Var fv) e)) (* Subst. with fresh variable*)
39
+ else
41
40
Lam (x, substitute vbef vaft e)
42
41
in
43
42
match e with
44
- | App (Lam(bef , expr ), aft ) -> substitute (Uml. Var bef) aft expr (* Directly apply 'b-reduction *)
45
- | App ( e1 , e2 ) -> let reduced_e1 = (stepv e1) in if e1 = reduced_e1 then App (e1 , stepv e2) else App (stepv e1, e2) ( * Apply 'b-reduction as CBV policy *)
46
- | Lam ( x , e ) -> Lam (x, stepv e) (* Try step on expression part *)
43
+ | App (Lam(v , exp ), Lam( v' , exp' )) -> substitute (Var v) ( Lam (v', exp')) exp (* Apply CBV directly *)
44
+ | App (Lam( v , exp ), following ) -> App ( Lam (v, exp) , stepv following) ( * Apply CBV on following side *)
45
+ | App ( heading , following ) -> App ( stepv heading, following) (* Apply CBV on heading side *)
47
46
| _ -> raise Stuck
48
47
49
48
let stepOpt stepf e = try Some (stepf e) with Stuck -> None
0 commit comments