diff --git a/config/cfg_kitti_autoencoder.py b/config/cfg_kitti_autoencoder.py new file mode 100644 index 0000000..0252165 --- /dev/null +++ b/config/cfg_kitti_autoencoder.py @@ -0,0 +1,66 @@ +DEPTH_LAYERS = 50 +POSE_LAYERS = 18 +FRAME_IDS = [0] +IMGS_PER_GPU = 5 +HEIGHT = 256 +WIDTH = 800 + +data = dict( + name = 'kitti', + split = 'exp', + height = HEIGHT, + width = WIDTH, + frame_ids = FRAME_IDS, + in_path = '/node01_data5/kitti_raw', + gt_depth_path = '/node01_data5/monodepth2-test/monodepth2/gt_depths.npz', + png = False, + stereo_scale = False, +) + +model = dict( + name = 'autoencoder', + depth_num_layers = DEPTH_LAYERS, + pose_num_layers = POSE_LAYERS, + frame_ids = FRAME_IDS, + imgs_per_gpu = IMGS_PER_GPU, + height = HEIGHT, + width = WIDTH, + scales = [0, 1, 2, 3], + min_depth = 0.1, + max_depth = 100.0, + depth_pretrained_path = '/node01/jobs/io/pretrained/checkpoints/resnet/resnet{}.pth'.format(DEPTH_LAYERS), + pose_pretrained_path = '/node01/jobs/io/pretrained/checkpoints/resnet/resnet{}.pth'.format(POSE_LAYERS), + automask = True, + disp_norm = True, + use_min_construct = True, + dis=0.001, + cvt=0.001, +) + +# resume_from = '/node01_data5/monodepth2-test/model/ms/ms.pth' +resume_from = None +finetune = None +total_epochs = 30 +imgs_per_gpu = IMGS_PER_GPU +learning_rate = 1e-4 +workers_per_gpu = 4 +validate = False + +optimizer = dict(type='Adam', lr=learning_rate, weight_decay=0) +optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) +lr_config = dict( + policy='step', + warmup='linear', + warmup_iters=500, + warmup_ratio=1.0 / 3, + step=[10,20], + gamma=0.5, +) + +checkpoint_config = dict(interval=1) +log_config = dict(interval=50, + hooks=[dict(type='TextLoggerHook'),]) +dist_params = dict(backend='nccl') +log_level = 'INFO' +load_from = None +workflow = [('train', 1)] \ No newline at end of file