forked from techfort/pycv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
video_rec.py
202 lines (185 loc) · 7.67 KB
/
video_rec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import os
import sys
import cv2
import numpy as np
def normalize(X, low, high, dtype=None):
"""Normalizes a given array in X to a value between low and high."""
X = np.asarray(X)
minX, maxX = np.min(X), np.max(X)
# normalize to [0...1].
X = X - float(minX)
X = X / float((maxX - minX))
# scale to [low...high].
X = X * (high-low)
X = X + low
if dtype is None:
return np.asarray(X)
return np.asarray(X, dtype=dtype)
def read_images(path, sz=None):
"""Reads the images in a given folder, resizes images on the fly if size is given.
Args:
path: Path to a folder with subfolders representing the subjects (persons).
sz: A tuple with the size Resizes
Returns:
A list [X,y]
X: The images, which is a Python list of numpy arrays.
y: The corresponding labels (the unique number of the subject, person) in a Python list.
"""
c = 0
X,y = [], []
for dirname, dirnames, filenames in os.walk(path):
for subdirname in dirnames:
subject_path = os.path.join(dirname, subdirname)
for filename in os.listdir(subject_path):
try:
if (filename == ".directory"):
continue
filepath = os.path.join(subject_path, filename)
im = cv2.imread(os.path.join(subject_path, filename), cv2.IMREAD_GRAYSCALE)
if (im is None):
print "image " + filepath + " is none"
else:
print filepath
# resize to given size (if given)
if (sz is not None):
im = cv2.resize(im, (200, 200))
X.append(np.asarray(im, dtype=np.uint8))
y.append(c)
except IOError, (errno, strerror):
print "I/O error({0}): {1}".format(errno, strerror)
except:
print "Unexpected error:", sys.exc_info()[0]
raise
print c
c = c+1
print y
return [X,y]
def face_rec():
names = ['Joe', 'Jane', 'Jack']
if len(sys.argv) < 2:
print "USAGE: facerec_demo.py </path/to/images> [</path/to/store/images/at>]"
sys.exit()
[X,y] = read_images(sys.argv[1])
y = np.asarray(y, dtype=np.int32)
if len(sys.argv) == 3:
out_dir = sys.argv[2]
model = cv2.face.createEigenFaceRecognizer()
model.train(np.asarray(X), np.asarray(y))
camera = cv2.VideoCapture(0)
face_cascade = cv2.CascadeClassifier('./cascades/haarcascade_frontalface_default.xml')
while (True):
read, img = camera.read()
faces = face_cascade.detectMultiScale(img, 1.3, 5)
for (x, y, w, h) in faces:
img = cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
roi = gray[x:x+w, y:y+h]
try:
roi = cv2.resize(roi, (200, 200), interpolation=cv2.INTER_LINEAR)
print roi.shape
params = model.predict(roi)
print "Label: %s, Confidence: %.2f" % (params[0], params[1])
cv2.putText(img, names[params[0]], (x, y - 20), cv2.FONT_HERSHEY_SIMPLEX, 1, 255, 2)
if (params[0] == 0):
cv2.imwrite('face_rec.jpg', img)
except:
continue
cv2.imshow("camera", img)
if cv2.waitKey(1000 / 12) & 0xff == ord("q"):
break
cv2.destroyAllWindows()
if __name__ == "__main__":
face_rec()
def original():
# This is where we write the images, if an output_dir is given
# in command line:
out_dir = None
names = ['Joe', 'Jane', 'Jack']
# You'll need at least a path to your image data, please see
# the tutorial coming with this source code on how to prepare
# your image data:
if len(sys.argv) < 2:
print "USAGE: facerec_demo.py </path/to/images> [</path/to/store/images/at>]"
sys.exit()
# Now read in the image data. This must be a valid path!
[X,y] = read_images(sys.argv[1])
# Convert labels to 32bit integers. This is a workaround for 64bit machines,
# because the labels will truncated else. This will be fixed in code as
# soon as possible, so Python users don't need to know about this.
# Thanks to Leo Dirac for reporting:
y = np.asarray(y, dtype=np.int32)
# If a out_dir is given, set it:
if len(sys.argv) == 3:
out_dir = sys.argv[2]
# Create the Eigenfaces model. We are going to use the default
# parameters for this simple example, please read the documentation
# for thresholding:
#model = cv2.face.createLBPHFaceRecognizer()
model = cv2.face.createEigenFaceRecognizer()
# Read
# Learn the model. Remember our function returns Python lists,
# so we use np.asarray to turn them into NumPy lists to make
# the OpenCV wrapper happy:
model.train(np.asarray(X), np.asarray(y))
# We now get a prediction from the model! In reality you
# should always use unseen images for testing your model.
# But so many people were confused, when I sliced an image
# off in the C++ version, so I am just using an image we
# have trained with.
#
# model.predict is going to return the predicted label and
# the associated confidence:
camera = cv2.VideoCapture(0)
face_cascade = cv2.CascadeClassifier('./cascades/haarcascade_frontalface_default.xml')
while (True):
read, img = camera.read()
faces = face_cascade.detectMultiScale(img, 1.3, 5)
for (x, y, w, h) in faces:
img = cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
roi = gray[x:x+w, y:y+h]
roi = cv2.resize(roi, (200, 200), interpolation=cv2.INTER_LINEAR)
print roi.shape
params = model.predict(roi)
print "Label: %s, Confidence: %.2f" % (params[0], params[1])
cv2.putText(img, names[params[0]], (x,y - 20), cv2.FONT_HERSHEY_SIMPLEX, 1, 255, 3)
cv2.imshow("camera", img)
if cv2.waitKey(1000 / 12) & 0xff == ord("q"):
break
[p_label, p_confidence] = model.predict(np.asarray(X[0]))
# Print it:
print "Predicted label = %d (confidence=%.2f)" % (p_label, p_confidence)
# Cool! Finally we'll plot the Eigenfaces, because that's
# what most people read in the papers are keen to see.
#
# Just like in C++ you have access to all model internal
# data, because the cv::FaceRecognizer is a cv::Algorithm.
#
# You can see the available parameters with getParams():
print model.getParams()
# Now let's get some data:
mean = model.getMat("mean")
eigenvectors = model.getMat("eigenvectors")
# We'll save the mean, by first normalizing it:
mean_norm = normalize(mean, 0, 255, dtype=np.uint8)
mean_resized = mean_norm.reshape(X[0].shape)
if out_dir is None:
cv2.imshow("mean", mean_resized)
else:
cv2.imwrite("%s/mean.png" % (out_dir), mean_resized)
# Turn the first (at most) 16 eigenvectors into grayscale
# images. You could also use cv::normalize here, but sticking
# to NumPy is much easier for now.
# Note: eigenvectors are stored by column:
for i in xrange(min(len(X), 16)):
eigenvector_i = eigenvectors[:,i].reshape(X[0].shape)
eigenvector_i_norm = normalize(eigenvector_i, 0, 255, dtype=np.uint8)
# Show or save the images:
if out_dir is None:
cv2.imshow("%s/eigenface_%d" % (out_dir,i), eigenvector_i_norm)
else:
cv2.imwrite("%s/eigenface_%d.png" % (out_dir,i), eigenvector_i_norm)
# Show the images:
if out_dir is None:
cv2.waitKey(0)
cv2.destroyAllWindows()