Skip to content

Latest commit

 

History

History
 
 

deepnetts

DeepNetts DeepNetts License


Run a docker container with DeepNetts (a DL Library, written in Java), running under the traditional Java 11 (from OpenJDK or another source) or GraalVM.

Table of contents

Goals

  • Run docker container DeepNetts
  • Ability to create custom docker images (scripts & docs provided)
  • Ability to debug the docker container
  • Run using the traditional JDK 11 (OpenJDK or vendor specific versions)
  • Run using the polyglot JVM i.e. GraalVM JDK (Community version from Oracle Labs), when running performing operations from the CLI
  • Play with and learn from with some examples for each of the libraries provided

DeepNetts examples: as a Java CLI app

Requirements before proceeding:

  • Java 11 or higher
    • GraalVM CE or EE (to able to build a native-image) (optional)
  • JAVA_HOME set correctly
  • Maven 3.5 of higher

Run the Classification or Regression example as illustrated in the tutorial notebooks: Classification | Regression as a Java App run from the CLI.

Perform the below steps in order to be able to build and run the example provided in the src folder in this folder:

$ git clone https://github.com/neomatrix369/awesome-ai-ml-dl
$ cd awesome-ai-ml-dl/examples/deepnetts

## build the DeepNetts Machine uberjar (aka shadowjar)
$ mvn clean package

or 

$ ./gradlew clean build --info

# build only shadowJar
$ ./gradlew clean shadowJar --info


# using the builder.sh script
## build uber jar via mvn as the build tool
./builder.sh --uber-jar

## build uber jar via gradle as the build tool
./builder.sh --build-tool gradle --uber-jar

Once the artifact is built, you will see the artifact target/deepnetts-machine-1.0-with-dependencies.jar, followed by this run this:

# classification example
$ time java -jar target/deepnetts-machine-1.0-with-dependencies.jar

or 

$ time java -jar build/libs/deepnetts-machine-1.0-with-dependencies.jar

or 

# regression example
$ time java -jar target/deepnetts-machine-1.0-with-dependencies.jar --regression

or

$ time java -jar build/libs/deepnetts-machine-1.0-with-dependencies.jar --regression

And you will see an output that looks like this:

time java -jar target/deepnetts-machine-1.0-with-dependencies.jar --regression | less
~ Running DeepNetts Machine
CLI Params: [--regression]
~~ Running DeepNetts Machine Regression
~~~ Loading the data
~~~~~~ Splitting datasets
Training data size = 42
Testing data size = 18
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~ Training the model ~~~
------------------------------------------------------------------------------------------------------------------
TRAINING NEURAL NETWORK
-----------------------------------------------------------------------------------------------------------------  
.
.
.
------------------------------------------------------------------------
~~~ Evaluating the model ~~~
RSquared: 0.8647233
MeanSquaredError: 0.0029451316
ResidualStandardError: 0.05519681
FStatistics: 370.75085

Original function: y = 0.5 * x + 0.2
Estimated/learned function: y = 0.5315051 * x + 0.29967403
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Predicted output for 0.2 :[0.40597504]
java -jar target/deepnetts-machine-1.0-with-dependencies.jar --regression  9.36s user 1.72s system 150% cpu 7.357 total

See detailed Classification output and Regression output.

native-image build (optional)

Requirements before proceeding:

  • JAR build with steps from previous section
  • GraalVM CE (to able to build a native-image)
  • [Optional] GraalVM EE (to able to build a profile-guided native-image)
  • [Optional] UPX (https://upx.github.io) to further compress native-image

Please follow the below to be able to build a native-image from the already built jar:

## build native-image from the mvn built artifact (jar file in target folder)
./builder.sh --extract
./builder.sh --native-image

## or compress the resulting native-image file further (-9 for highest compression)
./builder.sh --compress 9 --native-image

## or to build profile-guided optimisation using GraalVM EE
./builder.sh --pgo --native-image

## or compress the resulting native-image file further (-9 for highest compression)
./builder.sh --compress 9 --pgo --native-image

## build native-image from the gradle built artifact (jar file in build/libs folder)
./builder.sh --build-tool gradle --extract
./builder.sh --build-tool gradle --native-image

## or to build profile-guided optimisation using GraalVM EE
./builder.sh --pgo --build-tool gradle --native-image

## or compress the resulting native-image file further (-9 for highest compression)
./builder.sh --compress 9 --pgo --build-tool gradle --native-image

Once the native-image is built, you can run it with (no JDK dependencies needed):

# classification example
$ time ./deepnetts-machine-1.0-with-dependencies
or
$ time ./deepnetts-machine-1.0-with-dependencies-pgo   # build using --pgo option using GraalVM EE

or

# regression example
$ time ./deepnetts-machine-1.0-with-dependencies --regression
or
$ time ./deepnetts-machine-1.0-with-dependencies-pgo --regression   # build using --pgo option using GraalVM EE

Note: You will also notice it runs faster than the jar version, of course this could change when the dataset and/or other end-to-end training/evaluation flow changes (no speed guaranutees, it will depend on various factors).

Scripts provided

Scroll up to find the below provided scripts

  • docker-runner.sh: can perform a number of the below actions depending on the flags passed to it:
    • runs the container and brings you to the command prompt inside the container:
    • build the DeepNetts docker image takes under 5 minutes to finish on a decent connection
    • push pre-built docker images to docker hub (please pass in your own Docker username and later on enter Docker login details, see usage below)
    • a housekeeping script to remove dangling images and terminated containers (helps save some diskspace)
  • docker-image folder - provided with scripts to build and the scripts included into the container for the DeepNetts docker image

Usage

Help

$ ./docker-runner.sh --help
      Usage: ./docker-runner.sh --dockerUserName [Docker user name]
                                 --detach
                                 --jdk [GRAALVM]
                                 --javaopts [java opt arguments]
                                 --notebookMode
                                 --cleanup
                                 --buildImage
                                 --runContainer
                                 --pushImageToHub
                                 --help

       --dockerUserName      your Docker user name as on Docker Hub
                             (mandatory with build, run and push commands)
       --detach              run container and detach from it,
                             return control to console
       --jdk                 name of the JDK to use (currently supports
                             GRAALVM only, default is blank which
                             enables the traditional JDK)
       --javaopts            sets the JAVA_OPTS environment variable
                             inside the container as it starts
       --notebookMode        runs the Jupyter/Jupyhai notebook server
                             (default: opens the page in a browser)
       --cleanup             (command action) remove exited containers and
                             dangling images from the local repository
       --buildImage          (command action) build the docker image
       --runContainer        (command action) run the docker image as a docker container
       --pushImageToHub      (command action) push the docker image built to Docker Hub
       --help                shows the script usage help text

Run the DeepNetts docker container

Run the Jupyter/Jupyhai notebook server and open it the browser

$ ./docker-runner.sh --notebookMode --runContainer

### (The example DeepNetts notebooks can be found in the deepnetts-communityedition/notebooks folder
### (remember container ID published in the console)

Please watch this video on how to use a Java-based notebook to learn how to navigate through the cells and run the cells of the notebook or the whole notebook.

[Optional] To start a second session in the above running instance, do the below:

$ docker exec -it [CONTAINER_ID] /bin/bash"

### (apply above the container ID published in the previous console)

Run the docker container to the command prompt

$ ./docker-runner.sh --runContainer

Other methods to run the container

$ ./docker-runner.sh --runContainer --dockerUserName [your docker user name]

or run in GraalVM mode

$ ./docker-runner.sh --runContainer --jdk "GRAALVM"

or run by switching off JVMCI flag (default: on) when running in GRAALVM mode

$ ./docker-runner.sh --javaopts "-XX:-UseJVMCINativeLibrary"

Build the docker container

Ensure your environment has the below variable set, or set it in your .bashrc or .bash_profile or the relevant startup script:

export DOCKER_USER_NAME="your_docker_username"

You must have an account on Docker hub under the above user name.

$ ./docker-runner.sh --buildImage

orgr

$ ./docker-runner.sh --buildImage --dockerUserName "your_docker_username"

Push built DeepNetts docker image to Docker hub

$ ./docker-runner.sh --pushImageToHub

or

$ ./docker-runner.sh --pushImageToHub --dockerUserName "your_docker_username"

The above will prompt the docker login name and password, before it can push your image to Docker hub (you must have an account on Docker hub).

Docker image on Docker Hub

Find the DeepNetts Docker Image on Docker Hub. The docker-runner.sh --pushImageToHub script pushes the image to the Docker hub and the docker-runner.sh --runContainer script runs it from the local repository. If absent, in the the local repository, it downloads this image from Docker Hub.

Contributing

Contributions are very welcome, please share back with the wider community (and get credited for it)!

Please have a look at the CONTRIBUTING guidelines, also have a read about our licensing policy.


Go to Java/JVM Machine Learning page
Go to Main page