-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
217 lines (182 loc) · 6.77 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
from imutils import face_utils
from utils import *
import numpy as np
import pyautogui as pyag
import imutils
import dlib
import cv2
# Thresholds and consecutive frame length for triggering the mouse action.
MOUTH_AR_THRESH = 0.6
MOUTH_AR_CONSECUTIVE_FRAMES = 15
EYE_AR_THRESH = 0.19
EYE_AR_CONSECUTIVE_FRAMES = 15
WINK_AR_DIFF_THRESH = 0.04
WINK_AR_CLOSE_THRESH = 0.19
WINK_CONSECUTIVE_FRAMES = 10
# Initialize the frame counters for each action as well as
# booleans used to indicate if action is performed or not
MOUTH_COUNTER = 0
EYE_COUNTER = 0
WINK_COUNTER = 0
INPUT_MODE = False
EYE_CLICK = False
LEFT_WINK = False
RIGHT_WINK = False
SCROLL_MODE = False
ANCHOR_POINT = (0, 0)
WHITE_COLOR = (255, 255, 255)
YELLOW_COLOR = (0, 255, 255)
RED_COLOR = (0, 0, 255)
GREEN_COLOR = (0, 255, 0)
BLUE_COLOR = (255, 0, 0)
BLACK_COLOR = (0, 0, 0)
# Initialize Dlib's face detector (HOG-based) and then create
# the facial landmark predictor
shape_predictor = "model/shape_predictor_68_face_landmarks.dat"
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(shape_predictor)
# Grab the indexes of the facial landmarks for the left and
# right eye, nose and mouth respectively
(lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
(rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]
(nStart, nEnd) = face_utils.FACIAL_LANDMARKS_IDXS["nose"]
(mStart, mEnd) = face_utils.FACIAL_LANDMARKS_IDXS["mouth"]
# Video capture
vid = cv2.VideoCapture(0)
resolution_w = 1366
resolution_h = 768
cam_w = 640
cam_h = 480
unit_w = resolution_w / cam_w
unit_h = resolution_h / cam_h
while True:
# Grab the frame from the threaded video file stream, resize
# it, and convert it to grayscale
# channels)
_, frame = vid.read()
frame = cv2.flip(frame, 1)
frame = imutils.resize(frame, width=cam_w, height=cam_h)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Detect faces in the grayscale frame
rects = detector(gray, 0)
# Loop over the face detections
if len(rects) > 0:
rect = rects[0]
else:
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
continue
# Determine the facial landmarks for the face region, then
# convert the facial landmark (x, y)-coordinates to a NumPy
# array
shape = predictor(gray, rect)
shape = face_utils.shape_to_np(shape)
# Extract the left and right eye coordinates, then use the
# coordinates to compute the eye aspect ratio for both eyes
mouth = shape[mStart:mEnd]
leftEye = shape[lStart:lEnd]
rightEye = shape[rStart:rEnd]
nose = shape[nStart:nEnd]
# Because I flipped the frame, left is right, right is left.
temp = leftEye
leftEye = rightEye
rightEye = temp
# Average the mouth aspect ratio together for both eyes
mar = mouth_aspect_ratio(mouth)
leftEAR = eye_aspect_ratio(leftEye)
rightEAR = eye_aspect_ratio(rightEye)
ear = (leftEAR + rightEAR) / 2.0
diff_ear = np.abs(leftEAR - rightEAR)
nose_point = (nose[3, 0], nose[3, 1])
# Compute the convex hull for the left and right eye, then
# visualize each of the eyes
mouthHull = cv2.convexHull(mouth)
leftEyeHull = cv2.convexHull(leftEye)
rightEyeHull = cv2.convexHull(rightEye)
cv2.drawContours(frame, [mouthHull], -1, YELLOW_COLOR, 1)
cv2.drawContours(frame, [leftEyeHull], -1, YELLOW_COLOR, 1)
cv2.drawContours(frame, [rightEyeHull], -1, YELLOW_COLOR, 1)
for (x, y) in np.concatenate((mouth, leftEye, rightEye), axis=0):
cv2.circle(frame, (x, y), 2, GREEN_COLOR, -1)
# Check to see if the eye aspect ratio is below the blink
# threshold, and if so, increment the blink frame counter
if diff_ear > WINK_AR_DIFF_THRESH:
if leftEAR < rightEAR:
if leftEAR < EYE_AR_THRESH:
WINK_COUNTER += 1
if WINK_COUNTER > WINK_CONSECUTIVE_FRAMES:
pag.click(button='left')
WINK_COUNTER = 0
elif leftEAR > rightEAR:
if rightEAR < EYE_AR_THRESH:
WINK_COUNTER += 1
if WINK_COUNTER > WINK_CONSECUTIVE_FRAMES:
pag.click(button='right')
WINK_COUNTER = 0
else:
WINK_COUNTER = 0
else:
if ear <= EYE_AR_THRESH:
EYE_COUNTER += 1
if EYE_COUNTER > EYE_AR_CONSECUTIVE_FRAMES:
SCROLL_MODE = not SCROLL_MODE
# INPUT_MODE = not INPUT_MODE
EYE_COUNTER = 0
# nose point to draw a bounding box around it
else:
EYE_COUNTER = 0
WINK_COUNTER = 0
if mar > MOUTH_AR_THRESH:
MOUTH_COUNTER += 1
if MOUTH_COUNTER >= MOUTH_AR_CONSECUTIVE_FRAMES:
# if the alarm is not on, turn it on
INPUT_MODE = not INPUT_MODE
# SCROLL_MODE = not SCROLL_MODE
MOUTH_COUNTER = 0
ANCHOR_POINT = nose_point
else:
MOUTH_COUNTER = 0
if INPUT_MODE:
cv2.putText(frame, "READING INPUT!", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, RED_COLOR, 2)
x, y = ANCHOR_POINT
nx, ny = nose_point
w, h = 60, 35
multiple = 1
cv2.rectangle(frame, (x - w, y - h), (x + w, y + h), GREEN_COLOR, 2)
cv2.line(frame, ANCHOR_POINT, nose_point, BLUE_COLOR, 2)
dir = direction(nose_point, ANCHOR_POINT, w, h)
cv2.putText(frame, dir.upper(), (10, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.7, RED_COLOR, 2)
drag = 18
if dir == 'right':
pyag.moveRel(drag, 0)
elif dir == 'left':
pyag.moveRel(-drag, 0)
elif dir == 'up':
if SCROLL_MODE:
pyag.scroll(40)
else:
pyag.moveRel(0, -drag)
elif dir == 'down':
if SCROLL_MODE:
pyag.scroll(-40)
else:
pyag.moveRel(0, drag)
if SCROLL_MODE:
cv2.putText(frame, 'SCROLL MODE IS ON!', (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.7, RED_COLOR, 2)
# cv2.putText(frame, "MAR: {:.2f}".format(mar), (500, 30),
# cv2.FONT_HERSHEY_SIMPLEX, 0.7, YELLOW_COLOR, 2)
# cv2.putText(frame, "Right EAR: {:.2f}".format(rightEAR), (460, 80),
# cv2.FONT_HERSHEY_SIMPLEX, 0.7, YELLOW_COLOR, 2)
# cv2.putText(frame, "Left EAR: {:.2f}".format(leftEAR), (460, 130),
# cv2.FONT_HERSHEY_SIMPLEX, 0.7, YELLOW_COLOR, 2)
# cv2.putText(frame, "Diff EAR: {:.2f}".format(np.abs(leftEAR - rightEAR)), (460, 80),
# cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
# Show the frame
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
# If the `Esc` key was pressed, break from the loop
if key == 27:
break
# Do a bit of cleanup
cv2.destroyAllWindows()
vid.release()